Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

Springer Science and Business Media LLC - Tập 9 - Trang 1-13 - 2012
Eleonore Fröhlich1,2, Claudia Meindl1, Eva Roblegg3, Birgit Ebner1, Markus Absenger1, Thomas R Pieber2
1 Center for Medical Research, Medical University of Graz, Graz, Austria
2Department of Internal Medicine, Division of Endocrinology and Nuclear Medicine, Medical University of Graz, Graz, Austria
3Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Graz, Austria

Tóm tắt

Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polystyrene particles (CPS) of different sizes (20-500 nm) on lysosomes of the endothelial cell line EAhy926 after short (24h) and long (72h-96h) exposure times. Lysosomal localization of CPS, as well as lysosomal pH, lysosomal membrane integrity, morphology of the endosomal-lysosomal system and activities of the lysosomal enzymes,cathepsin B and sulfatases, upon exposure to CPS were recorded. CPS in sizes ≤100 nm showed high co-localization with lysosomes already after 4h, larger CPS after 24h. None of the particles at non-cytotoxic concentrations caused marked changes in lysosomal pH or destroyed lysosomal membrane integrity. At 24h of exposure, 20 nm CPS induced significant dilatation of the endosomal-lysosomal system and reduced activity of lysosomal sulfatases. After 72h, these alterations were less pronounced. Despite accumulation in lysosomes CPS induced only small changes in lysosomes. Upon longer contact, these changes are even less pronounced. The presented panel of assays may serve to identify effects on lysosomes also for other NPs.

Tài liệu tham khảo

Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311: 622–627. 10.1126/science.1114397 Migliore L, Coppede F: Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 2009, 674: 73–84. 10.1016/j.mrgentox.2008.09.013 Ranft U, Schikowski T, Sugiri D, Krutmann J, Kramer U: Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res 2009, 109: 1004–1011. 10.1016/j.envres.2009.08.003 Stone V, Johnston H, Clift MJ: Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 2007, 6: 331–340. Lin P, Chen JW, Chang LW, Wu JP, Redding L, Chang H, Yeh TK, Yang CS, Tsai MH, Wang HJ, et al.: Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ Sci Technol 2008, 42: 6264–6270. 10.1021/es800254a Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P: Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 2007, 115: 1339–1343. 10.1289/ehp.10290 Chen J, Dong X, Zhao J, Tang G: In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol 2009, 29: 330–337. 10.1002/jat.1414 Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B: Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 2008, 82: 151–157. 10.1007/s00204-007-0253-y Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C: Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010, 393: 649–655. 10.1016/j.bbrc.2010.02.046 Oberdorster G, Ferin J, Lehnert BE: Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994,102(Suppl 5):173–179. 10.1289/ehp.94102s5173 Mukae H, Vincent R, Quinlan K, English D, Hards J, Hogg JC, van Eeden SF: The effect of repeated exposure to particulate air pollution (PM10) on the bone marrow. Am J Respir Crit Care Med 2001, 163: 201–209. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, et al.: Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2007, 19: 857–871. 10.1080/08958370701432108 Rossi EM, Pylkkanen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, Sirola K, Nykasenoja H, Karisola P, Stjernvall T, et al.: Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci 2010, 113: 422–433. 10.1093/toxsci/kfp254 Yin XJ, Dong CC, Ma JY, Antonini JM, Roberts JR, Stanley CF, Schafer R, Ma JK: Suppression of cell-mediated immune responses to listeria infection by repeated exposure to diesel exhaust particles in brown Norway rats. Toxicol Sci 2004, 77: 263–271. 10.1093/toxsci/kfh035 Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005, 113: 1555–1560. 10.1289/ehp.8006 Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P: Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 2006, 40: 4353–4359. 10.1021/es0522635 Muhlfeld C, Gehr P, Rothen-Rutishauser B: Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 2008, 138: 387–391. Sahay G, Alakhova DY, Kabanov AV: Endocytosis of nanomedicines. J Control Release 2010, 145: 182–195. 10.1016/j.jconrel.2010.01.036 Doherty GJ, McMahon HT: Mechanisms of endocytosis. Ann Rev Biochem 2009, 78: 857–902. 10.1146/annurev.biochem.78.081307.110540 Chithrani BD, Ghazani AA, Chan WC: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6: 662–668. 10.1021/nl052396o Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault JC, Thorel A, Boudou JP, et al.: Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 2009, 3: 3955–3962. 10.1021/nn901014j Goya GF, Marcos-Campos I, Fernandez-Pacheco R, Saez B, Godino J, Asin L, Lambea J, Tabuenca P, Mayordomo JI, Larrad L, et al.: Dendritic cell uptake of iron-based magnetic nanoparticles. Cell Biol Int 2008, 32: 1001–1005. 10.1016/j.cellbi.2008.04.001 Jaiswal JK, Mattoussi H, Mauro JM, Simon SM: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 2003, 21: 47–51. 10.1038/nbt767 Nativo P, Prior IA, Brust M: Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2008, 2: 1639–1644. 10.1021/nn800330a Rejman J, Oberle V, Zuhorn IS, Hoekstra D: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004, 377: 159–169. 10.1042/BJ20031253 Stearns RC, Paulauskis JD, Godleski JJ: Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 2001, 24: 108–115. Olsson GM, Svensson I, Zdolsek JM, Brunk UT: Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction. Virchows Archiv B 1989, 56: 385–391. Maysinger D, Lovric J: Quantum dots and other fluorescent nanoparticles: quo vadis in the cell? Adv Exp Med Biol 2007, 620: 156–167. 10.1007/978-0-387-76713-0_12 Moore MN, Readman JAJ, Readman JW, Lowe DM, Frickers PE, Beesley A: Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vitro study. Nanotoxicology 2009, 3: 40–45. 10.1080/17435390802593057 Koehler A, Marx U, Broeg K, Bahns S, Bressling J: Effects of nanoparticles in Mytilus edulis gills and hepatopancreas - a new threat to marine life? Mar Environ Res 2008, 66: 12–14. 10.1016/j.marenvres.2008.02.009 Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE, Cantz M: Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999, 40: 737–743. Garnett MC, Kallinteri P: Nanomedicines and nanotoxicology: some physiological principles. Occup Med 2006, 56: 307–311. 10.1093/occmed/kql052 Frese MA, Schulz S, Dierks T: Arylsulfatase G, a novel lysosomal sulfatase. J Biol Chem 2008, 283: 11388–11395. 10.1074/jbc.M709917200 Greiner-Tollersrud O, Berg T: Lysosomal storage disorders. In Lysosomes. Edited by: Saftig P. Springer Science, Landes Bioscience, New York; 2005:60–73. Anderson N, Borlak J: FEBS Lett. Drug-induced phospholipidosis 2006, 580: 5533–5540. Fröhlich E, Meindl C, Roblegg E, Griesbacher A, Pieber TR: Cytotoxicity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology 2012, 6: 424–439. 10.3109/17435390.2011.586478 Fröhlich E, Samberger C, Kueznik T, Absenger M, Roblegg E, Zimmer A, Pieber TR: Cytotoxicity of nanoparticles independent from oxidative stress. J Toxicol Sci 2009, 34: 363–375. 10.2131/jts.34.363 Bhattacharyya S, Solakyildirim K, Zhang Z, Linhardt RJ, Tobacman JK: Chloroquine reduces arylsulphatase B activity and increases chondroitin-4-sulphate: implications for mechanisms of action and resistance. Malar J 2009, 8: 303. 10.1186/1475-2875-8-303 MacGregor RR, Hamilton JW, Kent GN, Shofstall RE, Cohn DV: The degradation of proparathormone and parathormone by parathyroid and liver cathepsin B. J Biol Chem 1979, 254: 4428–4433. http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006–4235B2-,01–01AbraxisBioscience-background.pdf http://www.pharmazie.com/graphic/A/42/1–24242.pdf Uchida M, Willits D, Muller K, Willis A, Jackiw L, Jutila M, Young M, Porter A, Douglas T, Uchida M, Willits D, Muller K, Willis A, Jackiw L, Jutila M, Young M, Porter A, Douglas T: Intra-cellular distribution of macrophage targeting ferritin iron oxide nano-composite. Adv Mater 2009, 21: 458–462. 10.1002/adma.200801209 Hasan NM, Adams GE, Joiner MC: Effect of serum starvation on expression and phosphorylation of PKC-alpha and p53 in V79 cells: implications for cell death. Int J Cancer 1999, 80: 400–405. 10.1002/(SICI)1097-0215(19990129)80:3<400::AID-IJC11>3.0.CO;2-U Mengual Gomez DL, Belaich MN, Rodriguez VA, Ghiringhelli PD: Effects of fetal bovine serum deprivation in cell cultures on the production of Anticarsia gemmatalis multinucleopolyhedrovirus. BMC Biotechnol 2010, 10: 68. 10.1186/1472-6750-10-68 Oya N, Zolzer F, Werner F, Streffer C: Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status. Strahlenther Onkol 2003, 179: 99–106. 10.1007/s00066-003-0973-8 Zetterberg A, Larsson O: Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci USA 1985, 82: 5365–5369. 10.1073/pnas.82.16.5365 Zetterberg A, Skold O: The effect of serum starvation on DNA, RNA and protein synthesis during interphase in L-cells. Exp Cell Res 1969, 57: 114–118. 10.1016/0014-4827(69)90374-7 Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J: Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 2007, 28: 2876–2884. 10.1016/j.biomaterials.2007.02.021 Al-Rawi M, Diabate S, Weiss C: Uptake and intracellular localization of submicron and nano-sized SiO(2) particles in HeLa cells. Arch Toxicol 2011, 85: 813–826. 10.1007/s00204-010-0642-5 He Q, Zhang Z, Gao Y, Shi J, Li Y: Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 2009, 5: 2722–2729. 10.1002/smll.200900923 Silver J, Ou W: Photoactivation of quantum dot fluorescence following endocytosis. Nano Lett 2005, 5: 1445–1449. 10.1021/nl050808n Lévy R, Shaheen U, Cesbron Y, Sée V: Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 2010, 1. Asati A, Santra S, Kaittanis C, Perez JM: Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010, 4: 5321–5331. 10.1021/nn100816s van Dyke R: part III The lysosome in its cytoplasmic environment. Acidification of endosomes and lysosomes. Lysosomal membrane bodies. In Subcellular Biochemistry, Vol 27 Biology of the lysosome. 23rd edition. Edited by: Lloyd J, Mason R. Plenum Press, London, New York; 1996. Held P, Newick K, Shen D, Patton W: Automated Detection of Drug-Induced Lysosomal Cytotoxicity - Automation of the Lyso-ID® Red Assay Using the EL406™ Combination Washer Dispenser. Lab Manager Magazine 2010. Ishiguro K, Ando T, Goto H: Novel application of 4-nitro-7-(1-piperazinyl)-2,1,3-benzoxadiazole to visualize lysosomes in live cells. Biotechniques 2008, 45: 467–468. Swain WA, O'Byrne KJ, Faux SP: Activation of p38 MAP kinase by asbestos in rat mesothelial cells is mediated by oxidative stress. Am J Physiol Lung Cell Mol Physiol 2004, 286: L859–865. Oh YK, Swanson JA: Different fates of phagocytosed particles after delivery into macrophage lysosomes. J Cell Biol 1996, 132: 585–593. 10.1083/jcb.132.4.585 Patzold S, Schmidt A, Seidel A: Loss of cathepsin B activity in alveolar macrophages after in vitro quartz phagocytosis. J Toxicol Environ Health 1993, 40: 547–554. 10.1080/15287399309531818 Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE: Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006, 6: 1794–1807. 10.1021/nl061025k Mayer A, Vadon M, Rinner B, Novak A, Wintersteiger R, Fröhlich E: The role of nanoparticle size in hemocompatibility. Toxicology 2009, 258: 139–147. 10.1016/j.tox.2009.01.015 D'Souza MP, August JT: A kinetic analysis of biosynthesis and localization of a lysosome-associated membrane glycoprotein. Arch Biochem Biophys 1986, 249: 522–532. 10.1016/0003-9861(86)90030-5