Acrylic acid and DMSP lyases in the green algae Ulva
Tài liệu tham khảo
De Clerck, 2018, Insights into the evolution of multicellularity from the sea lettuce genome, Curr. Biol., 28, 2921, 10.1016/j.cub.2018.08.015
Fort, 2020, Green tides select for fast expanding Ulva strains, Sci. Total Environ., 698, 10.1016/j.scitotenv.2019.134337
Simon, 2022, Applications of Ulva biomass and strategies to improve its yield and composition: a perspective for Ulva aquaculture, Biology, 11, 1593, 10.3390/biology11111593
Wichard, 2015, The green seaweed Ulva: a model system to study morphogenesis, Front. Plant Sci., 6, 72, 10.3389/fpls.2015.00072
Umen, 2021, Green algal models for multicellularity, Annu. Rev. Genet., 55, 603, 10.1146/annurev-genet-032321-091533
Gage, 1997, A new route for synthesis of dimethylsulphoniopropionate in marine algae, Nature, 387, 891, 10.1038/43160
Summers, 1998, Identification and stereospecificity of the first three enzymes of 3-dimethylsulfoniopropionate biosynthesis in a chlorophyte alga, Plant Physiol., 116, 369, 10.1104/pp.116.1.369
Shemi, 2022, Phylogeny and biogeography of the algal DMS-releasing enzyme, bioRxiv
Kiene, 2000, New and important roles for DMSP in marine microbial communities, J. Sea Res., 43, 209, 10.1016/S1385-1101(00)00023-X
Dickschat, 2015, The chemical biology of dimethylsulfoniopropionate, Org. Biomol. Chem., 13, 1954, 10.1039/C4OB02407A
Bullock, 2017, Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria, Front. Microbiol., 8, 637, 10.3389/fmicb.2017.00637
Bates, 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329, 319, 10.1038/329319a0
Kettle, 2000, Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models, J. Geophys. Res. Atmos., 105, 26793, 10.1029/2000JD900252
Charlson, 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655, 10.1038/326655a0
Andreae, 1997, Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052, 10.1126/science.276.5315.1052
Zhang, 2019, Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle, Sci. China, Life Sci., 1, 10.1016/j.lfs.2019.03.010
Sieburth, 1960, Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters, Science, 132, 676, 10.1126/science.132.3428.676
Sunda, 2002, An antioxidant function for DMSP and DMS in marine algae, Nature, 418, 317, 10.1038/nature00851
Ross, 2007, Intraspecific variation in stress-induced hydrogen peroxide scavenging by the Ulvoid macroalga Ulva lactuca, J. Phycol., 43, 466, 10.1111/j.1529-8817.2007.00346.x
Noordkamp, 2000, Acrylate in Phaeocystis colonies does not affect the surrounding bacteria, J. Sea Res., 43, 287, 10.1016/S1385-1101(00)00021-6
Lesser, 1989, Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity, Mar. Biol., 102, 243, 10.1007/BF00428286
Butow, 1998, The synergistic effect of carbon concentration and high temperature on lipid peroxidation in Peridinium gatunense, J. Plankton Res., 20, 355, 10.1093/plankt/20.2.355
Okamoto, 2001, Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts, Arch. Environ. Contam. Toxicol., 40, 18, 10.1007/s002440010144
Wolfe, 1997, Grazing-activated chemical defence in a unicellular marine alga, Nature, 387, 894, 10.1038/43168
Bacic, 1998, In vivo characterization of dimethylsulfoniopropionate lyase in the fungus Fusarium lateritium, Appl. Environ. Microbiol., 64, 106, 10.1128/AEM.64.1.106-111.1998
Steinke, 1996, Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev, (Ulvales, Chlorophyta), J. Exp. Mar. Biol. Ecol., 201, 73, 10.1016/0022-0981(95)00207-3
De Souza, 1996, Dimethylsulfoniopropionate lyase from the marine macroalga Ulva curvata: purification and characterization of the enzyme, Planta, 199, 433, 10.1007/BF00195736
Mohapatra, 2013, Comparative functional characteristics of DMSP lyases extracted from polar and temperate Phaeocystis species, Aquat. Biol., 18, 185, 10.3354/ab00504
Noordkamp, 1998, High acrylate concentrations in the mucus of Phaeocystis globosa colonies, Aquat. Microb. Ecol., 16, 45, 10.3354/ame016045
Alcolombri, 2015, Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle, Science, 348, 1466, 10.1126/science.aab1586
Alcolombri, 2016, Assigning the algal source of dimethylsulfide using a selective lyase inhibitor, ACS Chem. Biol., 12, 41, 10.1021/acschembio.6b00844
Shemi, 2021, Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean, Nat. Microbiol., 6, 1357, 10.1038/s41564-021-00971-3
Bikker, 2016, Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels, J. Appl. Phycol., 28, 3511, 10.1007/s10811-016-0842-3
Dominguez, 2019, Ulva lactuca, a source of troubles and potential riches, Mar. Drugs, 17, 357, 10.3390/md17060357
Lakshmi, 2020, A short review on the valorization of green seaweeds and ulvan: feedstock for chemicals and biomaterials, Biomolecules, 10, 991, 10.3390/biom10070991
Postma, 2018, Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration, J. Appl. Phycol., 30, 1281, 10.1007/s10811-017-1319-8
Magnusson, 2016, Seaweed salt from Ulva: a novel first step in a cascading biorefinery model, Algal Res., 16, 308, 10.1016/j.algal.2016.03.018
Prabhu, 2020, Integrated biorefinery process for sustainable fractionation of Ulva ohnoi (Chlorophyta): process optimization and revenue analysis, J. Appl. Phycol., 32, 2271, 10.1007/s10811-020-02044-0
Kar, 2017, Reactive extraction of acrylic acid with tri-n-butyl phosphate in natural oils, J. Chem. Technol. Biotechnol., 92, 2825, 10.1002/jctb.5295
Ko, 2020, A novel biosynthetic pathway for the production of acrylic acid through β-alanine route in Escherichia coli, ACS Synth. Biol., 9, 1150, 10.1021/acssynbio.0c00019
Beerthuis, 2015, Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables, Green Chem., 17, 1341, 10.1039/C4GC02076F
Han, 2021, Emissions of biogenic sulfur compounds and their regulation by nutrients during an Ulva prolifera bloom in the Yellow Sea, Mar. Pollut. Bull., 162, 10.1016/j.marpolbul.2020.111885
Liu, 2018, Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera, 317
Spielmeyer, 2010, Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 878, 3238, 10.1016/j.jchromb.2010.09.031
Curson, 2017, Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process, Nat. Microbiol., 2, 17009, 10.1038/nmicrobiol.2017.9
Reisky, 2018, Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901 T, Appl. Microbiol. Biotechnol., 102, 6987, 10.1007/s00253-018-9142-y
Sterck, 2012, ORCAE: online resource for community annotation of eukaryotes, Nat. Methods, 9, 1041, 10.1038/nmeth.2242
Sievers, 2014, Clustal omega, accurate alignment of very large numbers of sequences, 105
Gasteiger, 2005, 571
Armenteros, 2019, SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol., 37, 420, 10.1038/s41587-019-0036-z
Ferrè, 2006, DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification, Nucleic Acids Res., 34, W182, 10.1093/nar/gkl189
Hallgren, 2022, DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks, BioRxiv
Bird, 2011, High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli, Methods, 55, 29, 10.1016/j.ymeth.2011.08.002
Schulz, 2013, MTSA—a Matlab program to fit thermal shift data, Anal. Biochem., 433, 43, 10.1016/j.ab.2012.10.020
André, 2023, Microwave-assisted extraction of Ulva spp. including a stage of selective coagulation of ulvan stimulated by a bio-ionic liquid, Int. J. Biol. Macromol., 225, 952, 10.1016/j.ijbiomac.2022.11.158
Van Alstyne, 2007, Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the Northeast Pacific, Mar. Biol., 150, 1127, 10.1007/s00227-006-0448-4
Van Alstyne, 2007, DMSP in marine macroalgae and macroinvertebrates: distribution, function, and ecological impacts, Aquat. Sci., 69, 394, 10.1007/s00027-007-0888-z
Karsten, 1990, The effect of light intensity and daylength on the β-dimethylsulphoniopropionate (DMSP) content of marine green macroalgae from Antarctica, Plant Cell Environ., 13, 989, 10.1111/j.1365-3040.1990.tb01991.x
Bucciarelli, 2021, A new protocol using acidification for preserving DMSP in macroalgae and comparison with existing protocols, J. Phycol., 57, 689, 10.1111/jpy.13113
Wang, 2023, A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria, Environ. Microbiol., 10.1111/1462-2920.16355
Blomme, 2021, A molecular toolkit for the green seaweed Ulva mutabilis, Plant Physiol., 186, 1442, 10.1093/plphys/kiab185
Ichihara, 2022, Genome editing using a DNA-free clustered regularly interspaced short palindromic repeats-Cas9 system in green seaweed Ulva prolifera, Phycol. Res., 70, 50, 10.1111/pre.12472
Bucciarelli, 2013, Increased intracellular concentrations of DMSP and DMSO in iron-limited oceanic phytoplankton Thalassiosira oceanica and Trichodesmium erythraeum, Limnol. Oceanogr., 58, 1667, 10.4319/lo.2013.58.5.1667
Makshina, 2019, Bio-acrylates production: recent catalytic advances and perspectives of the use of lactic acid and their derivates, ChemCatChem, 11, 180, 10.1002/cctc.201801494