Acromegaly is associated with a distinct oral and gut microbiota

Pituitary - Tập 25 - Trang 520-530 - 2022
Serdar Sahin1, Aycan Gundogdu2,3, Ufuk Nalbantoglu3,4, Pinar Kadioglu1, Zuleyha Karaca5, Aysa Hacioglu5, Muhammed Emre Urhan5, Kursad Unluhizarci5, Ahmet Numan Demir1, Mehmet Hora3, Emre Durcan1, Gülsah Elbüken6, Hatice Sebile Dokmetas7, Sayid Shafi Zuhur6, Fahrettin Kelestimur8
1Department of Endocrinology and Metabolic Diseases, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
2Department of Microbiology and Clinical Microbiology, School of Medicine, Erciyes University, Kayseri, Turkey
3Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
4Department of Computer Engineering, Erciyes University, Kayseri, Turkey
5Department of Endocrinology and Metabolic Diseases, School of Medicine, Erciyes University, Kayseri, Turkey
6Department of Endocrinology and Metabolic Diseases, School of Medicine, Namik Kemal University, Tekirdaǧ, Turkey
7Department of Endocrinology and Metabolic Diseases, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
8Department of Endocrinology and Metabolic Diseases, School of Medicine, Yeditepe University, Istanbul, Turkey

Tóm tắt

Our aim was to investigate the changes in the composition of oral and gut microbiota in patients with newly diagnosed acromegaly and their relationship with IGF-1 levels. Oral and fecal samples were collected from patients with newly diagnosed acromegaly without comorbidities and from healthy controls. The composition of the microbiota was analyzed. The general characteristics, oral and stool samples of the patients and healthy control subjects were compared. The changes in microbiota composition in both habitats, their correlations and associations with IGF-1 were statistically observed using machine learning models. Fifteen patients with newly diagnosed acromegaly without comorbidities and 15 healthy controls were included in the study. There was good agreement between fecal and oral microbiota in patients with acromegaly (p = 0.03). Oral microbiota diversity was significantly increased in patients with acromegaly (p < 0.01). In the fecal microbiota, the Firmicutes/Bacteroidetes ratio was lower in patients with acromegaly than in healthy controls (p = 0.011). Application of the transfer learned model to the pattern of microbiota allowed us to identify the patients with acromegaly with perfect accuracy. Patients with acromegaly have their own oral and gut microbiota even if they do not have acromegaly-related complications. Moreover, the excess IGF-1 levels could be correctly predicted based on the pattern of the microbiome.

Tài liệu tham khảo

Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, Wass JAH (2014) Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99(11):3933–3951. https://doi.org/10.1210/jc.2014-2700 Colao A, Ferone D, Marzullo P, Lombardi G (2004) Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25(1):102–152. https://doi.org/10.1210/er.2002-0022 Lavrentaki A, Paluzzi A, Wass JAH, Karavitaki N (2017) Epidemiology of acromegaly: review of population studies. Pituitary 20(1):4–9. https://doi.org/10.1007/s11102-016-0754-x Reid TJ, Post KD, Bruce JN, Kanibir MN, Reyes-Vidal CM, Freda PU (2010) Features at diagnosis of 324 patients with acromegaly did not change from 1981 to 2006: acromegaly remains under-recognized and under-diagnosed. Clin Endocrinol 72(2):203–238. https://doi.org/10.1111/j.1365-2265.2009.03626.x Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, Wang X, Xu X, Chen N, Wu WKK, Al-Aama J, Hans Nielsen HJ, Kiilerich P, Jensen BAH, Yau TO, Lan Z, Jia H, Li J, Xiao L, Lam TYY, Ng SC, Cheng AS, Wong VW, Chan FKL, Xu X, Yang H, Madsen L, Datz C, Tilg H, Wang J, Brünner N, Kristiansen K, Arumugam M, Sung JJ, Wang J (2017) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66(1):70–78. https://doi.org/10.1136/gutjnl-2015-309800 Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15(3):317–328. https://doi.org/10.1016/j.chom.2014.02.007 Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439. https://doi.org/10.1126/science.1237439 Aurigemma NC, Koltun KJ, VanEvery H, Rogers CJ, De Souza MC (2018) Linking the gut microbiota to bone health in anorexia nervosa. Curr Osteoporos Rep 16(1):65–75. https://doi.org/10.1371/journal.pbio.1002533 Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238. https://doi.org/10.1210/me.2014-1108 Farzi A, Fröhlich EE, Holzer P (2018) Gut microbiota and the neuroendocrine system. Neurotherapeutics 15(1):5–22. https://doi.org/10.1007/s13311-017-0600-5 Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857. https://doi.org/10.1126/science.aad8588 Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414. https://doi.org/10.1016/j.cmet.2011.07.012 Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA 113(47):E7554–E7563. https://doi.org/10.1073/pnas.1607235113 Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674. https://doi.org/10.1126/science.1212782 Hacioglu A, Gundogdu A, Nalbantoglu U, Karaca Z, Urhan ME, Sahin S, Dokmetas HS, Kadioglu P, Kelestimur F, Pituitary Microbiom Study Group (PITMIT-SG) (2021) Gut microbiota in patients with newly diagnosed acromegaly: a pilot cross-sectional study. Pituitary 24(4):600–610. https://doi.org/10.1007/s11102-021-01137-4 Melmed S (2009) Acromegaly pathogenesis and treatment. J Clin Investig 119(11):3189–3202. https://doi.org/10.1172/JCI39375 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8 http://earthmicrobiome.org/protocols-and-standards/16s. Accessed 7 Sept 2021 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590-596. https://doi.org/10.1093/nar/gks1219 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD ınternational conference on knowledge discovery and data mining. San Francisco, California Mason L, Baxter J, Bartlett P, Frean M (1999) Boosting algorithms as gradient descent in Function space. Nips 33:294–309 Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E (2015) Personalized nutrition by prediction of glycemic responses. Cell 163(5):1079–1094. https://doi.org/10.1016/j.cell.2015.11.001 Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology 37(9):1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007 Jensen EA, Young JA, Jackson Z, Busken J, List EO, Carroll RK, Kopchick JJ, Murphy ER, Berryman DE (2020) Growth hormone deficiency and excess alter the gut microbiome in adult male mice. Endocrinology 161(4):026. https://doi.org/10.1210/ENDOCR/BQAA026 Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51. https://doi.org/10.1186/s13073-016-0307-y Chatelier EL, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium; Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://doi.org/10.1038/nature12506 Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, Giannoukos G, Ciulla D, Tabbaa D, Ingram J, Schauer DB, Ward DV, Korzenik JR, Xavier RJ, Bousvaros A, Alm EJ (2012) Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE 7(6):e39242. https://doi.org/10.1371/journal.pone.0039242 Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy D, DN (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821 Krogius-Kurikka L, Lyra A, Malinen E, Aarnikunnas J, Tuimala J, Paulin L, Mäkivuokko H, Kajander K, Palva A (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol 9:95. https://doi.org/10.1186/1471-230X-9-95 Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD (2011) Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 13:149. https://doi.org/10.3389/fmicb.2011.00149 Kitamoto S, Nagao-Kitamoto H, Jiao Y, Gillilland MG 3rd, Hayashi A, Imai J, Sugihara K, Miyoshi M, Brazil JC, Kuffa P, Hill BD, Rizvi SM, Wen F, Bishu S, Inohara N, Eaton KA, Nusrat A, Lei YL, Giannobile WV, Kamada N (2020) The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 182(2):447-462.e14. https://doi.org/10.1016/j.cell.2020.05.048 Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y, Lan Z, Chen B, Li Y, Zhong H, Xie H, Jie Z, Chen W, Tang S, Xu X, Wang X, Cai X, Liu S, Xia Y, Li J, Qiao X, Al-Aama JY, Chen H, Wang L, Wu QJ, Zhang F, Zheng W, Li Y, Zhang M, Luo G, Xue W, Xiao L, Li J, Chen W, Xu X, Yin Y, Yang H, Wang J, Kristiansen K, Liu L, Li T, Huang Q, Li Y, Wang J (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21(8):895–905. https://doi.org/10.1038/nm.3914 Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359(6375):592–597. https://doi.org/10.1126/science.aah3648 Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM (2019) Enterotoxigenic Bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol 9:449. https://doi.org/10.3389/fcimb.2019.00449 Gil-Cruz C, Perez-Shibayama C, De Martin A, Ronchi F, van der Borght K, Niederer R (2019) Microbiotaderived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366(6467):881–886. https://doi.org/10.1126/science.aav3487 Lin B, Wang M, Gao R, Ye Z, Yu Y, He W, Qiao N, Ma Z, Ji C, Shi C, Zhou X, Wang Y, Zeng F, Zhang L, Gong W, Cao Z, Zhou P, Melnikov V, Ye H, Li Y, Zhang Z, He M, Qin H, Zhang Y (2022) Characteristics of gut microbiota in patients with GH-secreting pituitary adenoma. Microbiol Spectr 10(1):e0042521. https://doi.org/10.1128/spectrum.00425-21 Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V, Bronstein MD, Casanueva FF, Clemmons D, Colao A, Ferone D, Fleseriu M, Frara S, Gadelha MR, Ghigo E, Gurnell M, Heaney AP, Ho K, Ioachimescu A, Katznelson L, Kelestimur F, Kopchick J, Krsek M, Lamberts S, Losa M, Luger A, Maffei P, Marazuela M, Mazziotti G, Mercado M, Mortini P, Neggers S, Pereira AM, Petersenn S, Puig-Domingo M, Salvatori R, Shimon I, Strasburger C, Tsagarakis S, van der Lely AJ, Wass J, Zatelli MC, Melmed S (2020) A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. J Clin Endocrinol Metab 105(4):dgz096. https://doi.org/10.1210/clinem/dgz096 Jensen EA, Young JA, Kuhn J, Onusko M, Busken J, List EO, Kopchick JJ, Berryman DE (2021) Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners. Pituitary. https://doi.org/10.1007/s11102-021-01179-8 Iwamuro M, Yasuda M, Hasegawa K, Fujisawa S, Ogura-Ochi K, Sugihara Y, Harada K, Hiraoka S, Okada H, Otsuka F (2018) Colonoscopy examination requires a longer time in patients with acromegaly than in other individuals. Endocr J 65(2):151–157. https://doi.org/10.1507/endocrj.EJ17-0322 Renehan AG, Painter JE, Bell GD, Rowland RS, O’Dwyer ST, Shalet SM (2005) Determination of large bowel length and loop complexity in patients with acromegaly undergoing screening colonoscopy. Clin Endocrinol (Oxf) 62(3):323–330. https://doi.org/10.1111/j.1365-2265.2005.02217.x Wassenaar MJ, Cazemier M, Biermasz NR, Pereira AM, Roelfsema F, Smit JW, Hommes DW, Felt-Bersma RJ, Romijn JA (2010) Acromegaly is associated with an increased prevalence of colonic diverticula: a case-control study. J Clin Endocrinol Metab 95(5):2073–2079. https://doi.org/10.1210/jc.2009-1714 Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, Kurokawa K, Toyoda A, Ogura Y, Hayashi T, Hatakeyama M, Nakagama H, Saito Y, Fukuda S, Shibata T, Yamada T (2019) Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25(6):968–976. https://doi.org/10.1038/s41591-019-0458-7 Zorron Cheng Tao PuL, Yamamoto K, Honda T, Nakamura M, Yamamura T, Hattori S, Burt AD, Singh R, Hirooka Y, Fujishiro M (2020) Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J Gastroenterol Hepatol 35(3):433–437. https://doi.org/10.1111/jgh.14868 Yang TW, Lee WH, Tu SJ, Huang WC, Chen HM, Sun TH, Tsai MC, Wang CC, Chen HY, Huang CC, Shiu BH, Yang TL, Huang HT, Chou YP, Chou CH, Huang YR, Sun YR, Liang C, Lin FM, Ho SY, Chen WL, Yang SF, Ueng KC, Huang HD, Huang CN, Jong YJ, Lin CC (2019) Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Sci Rep 9(1):10923. https://doi.org/10.1038/s41598-019-45588-z