Acridinium salts as metal-free electrocatalyst for hydrogen evolution reaction

Electrochemistry Communications - Tập 68 - Trang 59-61 - 2016
A.V. Dolganov1, B.S. Tanaseichuk1, D.N. Moiseeva1, V.Y. Yurova1, J.R. Sakanyan1, N.S. Shmelkova1, V.V. Lobanov1
1Department of Chemistry, Mordovian Ogarev State University, Saransk 430005, Russia

Tài liệu tham khảo

Turner, 2004, Sustainable hydrogen production, Science, 305, 972, 10.1126/science.1103197 Riis, 2006, Hydrogen production R&D: priorities and gaps, International Energy Agency Study, 5 Armaroli, 2011, The hydrogen issue, ChemSusChem, 4, 21, 10.1002/cssc.201000182 Safizadeh, 2015, Electrocatalysis developments for hydrogen evolution reaction in alkaline, Int. J. Hydrog. Energy, 40, 256, 10.1016/j.ijhydene.2014.10.109 McKone, 2014, Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., 5, 865, 10.1039/C3SC51711J Afgan, 2007, Multi-criteria evaluation of hydrogen system options, Int. J. Hydrog. Energy, 32, 3183, 10.1016/j.ijhydene.2007.04.045 Simmons, 2014, Mimicking hydrogenases: from biomimetics to artificial enzymes, Coord. Chem. Rev., 270, 127, 10.1016/j.ccr.2013.12.018 Frey, 2002, Hydrogenases: hydrogen-activating enzymes, ChemBioChem, 3, 153, 10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B Cracknell, 2008, Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis, Chem. Rev., 108, 2439, 10.1021/cr0680639 Thauer, 1996, Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst, Chem. Rev., 96, 3031, 10.1021/cr9500601 Paleček, 2014, Chitosan catalyzes hydrogen evolution at mercury electrodes, Electrochem. Commun., 44, 59, 10.1016/j.elecom.2014.04.015 Vargováa, 2016, Label-free electrochemical detection of singlet oxygen protein damage, Electrochim. Acta, 187, 662, 10.1016/j.electacta.2015.11.104 Koper, 1985, Electrochemistry of the 9-phenyl-10-methyl-acridan/acridinium redox system; a high-potential NADH/NAD+ analogue, Recl. Trav. Chim. Pays-Bas, 104, 296, 10.1002/recl.19851041106 Appel, 2014, Determining the overpotential for a molecular electrocatalyst, ACS Catal., 4, 630, 10.1021/cs401013v Saveant, 2008, Molecular catalysis of electrochemical reactions. Mechanistic aspects, Chem. Rev., 108, 2348, 10.1021/cr068079z Roberts, 2013, Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile, Inorg. Chem., 52, 3823, 10.1021/ic302461q M.L, 2011, A synthetic nickel electrocatalyst with a turnover frequency above 100,000s−1 for H2 production, Science, 333, 863, 10.1126/science.1205864 Artero, 2011, Splitting Water with Cobalt, Angew. Chem. Int. Ed. Engl., 50, 7238, 10.1002/anie.201007987