Acoustofluidic methods in cell analysis

TrAC Trends in Analytical Chemistry - Tập 117 - Trang 280-290 - 2019
Yuliang Xie1, Hunter Bachman2, Tony Jun Huang2
1Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 USA
2Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27707, USA

Tài liệu tham khảo

Sibbitts, 2018, Cellular analysis using microfluidics, Anal. Chem., 90, 65, 10.1021/acs.analchem.7b04519 Mazzarello, 1999, A unifying concept: the history of cell theory, Nat. Cell Biol., 1, E13, 10.1038/8964 Gest, 2004, The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the royal society, Notes Rec. R. Soc. Lond., 58, 187, 10.1098/rsnr.2004.0055 Fulwyler, 1965, Electronic separation of biological cells by volume, Science (80), 150, 910, 10.1126/science.150.3698.910 Julius, 1972, Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter, Proc. Natl. Acad. Sci., 69, 1934, 10.1073/pnas.69.7.1934 Saiki, 1985, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science (80), 230, 1350, 10.1126/science.2999980 Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044 Macosko, 2015, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, 161, 1202, 10.1016/j.cell.2015.05.002 Bruus, 2011, Acoustofluidics 1: governing equations in microfluidics, Lab Chip, 11, 3742, 10.1039/c1lc20658c Ozcelik, 2018, Acoustic tweezers for the life sciences, Nat. Methods, 15, 1021, 10.1038/s41592-018-0222-9 Kundt, 1866, Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen, Ann. Der Phys. Und Chemie., 203, 497, 10.1002/andp.18662030402 Barnes, 1949, Visual methods for studying ultrasonic phenomena, J. Appl. Phys., 20, 286, 10.1063/1.1698357 Shi, 2009, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW), Lab Chip, 9, 2890, 10.1039/b910595f Zhang, 2018, Digital acoustofluidics enables contactless and programmable liquid handling, Nat. Commun., 9, 2928, 10.1038/s41467-018-05297-z Tian, 2019, Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells, Sci. Adv., 5, 10.1126/sciadv.aau6062 Habibi, 2017, Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave, Lab Chip, 17, 3279, 10.1039/C7LC00640C Beyeler, 2007, Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field, J. Microelectromech. Syst., 16, 7, 10.1109/JMEMS.2006.885853 Shi, 2011, Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW), Lab Chip, 11, 2319, 10.1039/c1lc20042a Shi, 2008, Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab Chip, 8, 221, 10.1039/B716321E Agrawal, 2018, Continuous focusing of microparticles in horizontally actuated rectangular channels, Phys. Rev. Appl., 10, 1, 10.1103/PhysRevApplied.10.024036 Antfolk, 2014, Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis, Lab Chip, 14, 2791, 10.1039/C4LC00202D Ding, 2014, Cell separation using tilted-angle standing surface acoustic waves, Proc. Natl. Acad. Sci., 111, 12992, 10.1073/pnas.1413325111 Wu, 2017, Isolation of exosomes from whole blood by integrating acoustics and microfluidics, Proc. Natl. Acad. Sci., 114, 10584, 10.1073/pnas.1709210114 Collins, 2014, Particle separation using virtual deterministic lateral displacement (vDLD), Lab Chip, 14, 1595, 10.1039/C3LC51367J Thévoz, 2010, Acoustophoretic synchronization of mammalian cells in microchannels, Anal. Chem., 82, 3094, 10.1021/ac100357u Shilton, 2008, Particle concentration and mixing in microdrops driven by focused surface acoustic waves, J. Appl. Phys., 104, 014910, 10.1063/1.2951467 Xie, 2013, Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles, Lab Chip, 13, 1772, 10.1039/c3lc00043e Franke, 2010, Surface acoustic wave actuated cell sorting (SAWACS), Lab Chip, 10, 789, 10.1039/b915522h Zhang, 2019, Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans, Lab Chip, 10.1039/C8LC01012A He, 2017, In-line trapping and rotation of bio-particles via 3-D micro-vortices generated by localized ultrahigh frequency acoustic resonators, 1789 Ahmed, 2016, Rotational manipulation of single cells and organisms using acoustic waves, Nat. Commun., 7, 11085, 10.1038/ncomms11085 Xie, 2016, Probing cell deformability via acoustically actuated bubbles, Small, 12, 902, 10.1002/smll.201502220 Li, 2015, Acoustic separation of circulating tumor cells, Proc. Natl. Acad. Sci., 112, 4970, 10.1073/pnas.1504484112 Goddard, 2006, Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer, Cytom. Part A, 69A, 66, 10.1002/cyto.a.20205 Hiramatsu, 2019, High-throughput label-free molecular fingerprinting flow cytometry, Sci. Adv., 5, 10.1126/sciadv.aau0241 Guo, 2015, Controlling cell–cell interactions using surface acoustic waves, Proc. Natl. Acad. Sci., 112, 43, 10.1073/pnas.1422068112 Huang, 2018, A sharp-edge-based acoustofluidic chemical signal generator, Lab Chip, 18, 1411, 10.1039/C8LC00193F Ahmed, 2014, Acoustofluidic chemical waveform generator and switch, Anal. Chem., 86, 11803, 10.1021/ac5033676 Mitsakakis, 2009, SAW device integrated with microfluidics for array-type biosensing, Microelectron. Eng., 86, 1416, 10.1016/j.mee.2008.12.063 Gizeli, 1997, Design considerations for the acoustic waveguide biosensor, Smart Mater. Struct., 6, 700, 10.1088/0964-1726/6/6/006 Sonato, 2016, A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor, Lab Chip, 16, 1224, 10.1039/C6LC00057F Ashkin, 1987, Optical trapping and manipulation of viruses and bacteria, Science (80), 235, 1517, 10.1126/science.3547653 MacDonald, 2003, Microfluidic sorting in an optical lattice, Nature, 426, 421, 10.1038/nature02144 Ashkin, 1986, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 11, 288, 10.1364/OL.11.000288 Pethig, 1996, Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells, Crit. Rev. Biotechnol., 16, 331, 10.3109/07388559609147425 Wang, 1997, Dielectrophoretic manipulation of particles, IEEE Trans. Ind. Appl., 33, 660, 10.1109/28.585855 Bruus, 2012, Acoustofluidics 7: the acoustic radiation force on small particles, Lab Chip, 12, 1014, 10.1039/c2lc21068a Wiklund, 2012, Acoustofluidics 14: applications of acoustic streaming in microfluidic devices, Lab Chip, 12, 2438, 10.1039/c2lc40203c Lenshof, 2012, Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems, Lab Chip, 12, 1210, 10.1039/c2lc21256k Bruus, 2011, Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation, Lab Chip, 11, 3579, 10.1039/c1lc90058g Marx, 2015, Biophysics: using sound to move cells, Nat. Methods, 12, 41, 10.1038/nmeth.3218 Yeo, 2014, Surface acoustic wave microfluidics, Annu. Rev. Fluid Mech., 46, 379, 10.1146/annurev-fluid-010313-141418 Ding, 2013, Surface acoustic wave microfluidics, Lab Chip, 13, 3626, 10.1039/c3lc50361e Destgeer, 2015, Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves, Lab Chip, 15, 2722, 10.1039/C5LC00265F AlHasan, 2013, Surface acoustic streaming in microfluidic system for rapid multicellular tumor spheroids generation, 89235C Wu, 2019, Acoustofluidic separation of cells and particles, Microsyst. Nanoeng., 5, 32, 10.1038/s41378-019-0064-3 Meng, 2019, Acoustic tweezers, J. Phys. D Appl. Phys., 52, 273001, 10.1088/1361-6463/ab16b5 Connacher, 2018, Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications, Lab Chip, 18, 1952, 10.1039/C8LC00112J Li, 2019, Applications of acoustofluidics in bioanalytical chemistry, Anal. Chem., 91, 757, 10.1021/acs.analchem.8b03786 Friend, 2011, Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics, Rev. Mod. Phys., 83, 647, 10.1103/RevModPhys.83.647 Taller, 2015, On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis, Lab Chip, 15, 1656, 10.1039/C5LC00036J Salehi-Reyhani, 2015, Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays, Anal. Chem., 87, 2161, 10.1021/ac5033758 Nee Tan, 2014, Bubble inducing cell lysis in a sessile droplet, Appl. Phys. Lett., 104, 103704, 10.1063/1.4868407 Deng, 2004, Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol., 30, 519, 10.1016/j.ultrasmedbio.2004.01.005 Fan, 2012, Spatiotemporally controlled single cell sonoporation, Proc. Natl. Acad. Sci., 109, 16486, 10.1073/pnas.1208198109 Zhang, 2017, Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device, Small, 13, 1602962, 10.1002/smll.201602962 Lu, 2019, Hypersonic poration of supported lipid bilayers, Mater. Chem. Front., 3, 782, 10.1039/C8QM00589C Lu, 2019, Controlled and tunable loading and release of vesicles by using gigahertz acoustics, Angew. Chem. Int. Ed., 58, 159, 10.1002/anie.201810181 Dijkmans, 2004, Microbubbles and ultrasound: from diagnosis to therapy, Eur. J. Echocardiogr., 5, 245, 10.1016/j.euje.2004.02.001 Tomizawa, 2013, Sonoporation: gene transfer using ultrasound, World J. Methodol., 3, 39, 10.5662/wjm.v3.i4.39 Liang, 2010, Sonoporation, drug delivery, and gene therapy, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 224, 343, 10.1243/09544119JEIM565 Länge, 2008, Surface acoustic wave biosensors: a review, Anal. Bioanal. Chem., 391, 1509, 10.1007/s00216-008-1911-5 Go, 2017, Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective, Anal. Meth., 9, 4112, 10.1039/C7AY00690J Minsky, 1988, Memoir on inventing the confocal scanning microscope, Scanning, 10, 128, 10.1002/sca.4950100403 Hoffman, 2006, Confocal laser endomicroscopy: technical status and current indications, Endoscopy, 38, 1275, 10.1055/s-2006-944813 Ozcelik, 2016, Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures, Small, 12, 5120, 10.1002/smll.201601760 Schwarz, 2014, Rotation of fibers and other non-spherical particles by the acoustic radiation torque, Microfluid. Nanofluidics, 18, 65, 10.1007/s10404-014-1408-9 Zmijan, 2015, High throughput imaging cytometer with acoustic focussing, RSC Adv., 5, 83206, 10.1039/C5RA19497K Olson, 2017, Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles, Limnol Oceanogr. Methods, 15, 867, 10.1002/lom3.10205 Lambert, 2017, A fluorescence-activated cell sorting subsystem for the Imaging FlowCytobot, Limnol Oceanogr. Methods, 15, 94, 10.1002/lom3.10145 Ozcan, 2014, Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools, Lab Chip, 14, 3187, 10.1039/C4LC00010B Adamo, 2012, Microfluidics-based assessment of cell deformability, Anal. Chem., 84, 6438, 10.1021/ac300264v Grover, 2011, Measuring single-cell density, Proc. Natl. Acad. Sci., 108, 10992, 10.1073/pnas.1104651108 Cross, 2007, Nanomechanical analysis of cells from cancer patients, Nat. Nanotechnol., 2, 780, 10.1038/nnano.2007.388 Suresh, 2007, Biomechanics and biophysics of cancer cells, Acta Biomater., 3, 413, 10.1016/j.actbio.2007.04.002 Lee, 2007, Biomechanics approaches to studying human diseases, Trends Biotechnol., 25, 111, 10.1016/j.tibtech.2007.01.005 Kang, 2019, Noninvasive monitoring of single-cell mechanics by acoustic scattering, Nat. Methods, 16, 263, 10.1038/s41592-019-0326-x Hartono, 2011, On-chip measurements of cell compressibility via acoustic radiation, Lab Chip, 11, 4072, 10.1039/c1lc20687g Wang, 2019, A continuous-flow acoustofluidic cytometer for single-cell mechanotyping, Lab Chip, 19, 387, 10.1039/C8LC00711J Augustsson, 2016, Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping, Nat. Commun., 7, 11556, 10.1038/ncomms11556 Baasch, 2018, Acoustic compressibility of Caenorhabditis elegans, Biophys. J., 115, 1817, 10.1016/j.bpj.2018.08.048 Kamsma, 2018, Single-cell acoustic force spectroscopy: resolving kinetics and strength of T cell adhesion to fibronectin, Cell Rep., 24, 3008, 10.1016/j.celrep.2018.08.034 Sitters, 2015, Acoustic force spectroscopy, Nat. Methods, 12, 47, 10.1038/nmeth.3183 Kamsma, 2016, Tuning the music: acoustic force spectroscopy (AFS) 2.0, Methods, 105, 26, 10.1016/j.ymeth.2016.05.002 Sorkin, 2018, Probing cellular mechanics with acoustic force spectroscopy, Mol. Biol. Cell, 29, 2005, 10.1091/mbc.E18-03-0154 Ravetto, 2014, Monocytic cells become less compressible but more deformable upon activation, PLoS One, 9, e92814, 10.1371/journal.pone.0092814 Cristofanilli, 2004, Circulating tumor cells, disease progression, and survival in metastatic breast cancer, N. Engl. J. Med., 351, 781, 10.1056/NEJMoa040766 Murlidhar, 2014, A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells, Small, 10, 4895, 10.1002/smll.201400719 Stott, 2010, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Proc. Natl. Acad. Sci., 107, 18392, 10.1073/pnas.1012539107 Li, 2013, Probing circulating tumor cells in microfluidics, Lab Chip, 13, 602, 10.1039/c2lc90148j Wu, 2018, Circulating tumor cell phenotyping via high-throughput acoustic separation, Small, 14, 1801131, 10.1002/smll.201801131 Antfolk, 2015, Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells, Anal. Chem., 87, 9322, 10.1021/acs.analchem.5b02023 Antfolk, 2015, A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells, Lab Chip, 15, 2102, 10.1039/C5LC00078E Augustsson, 2012, Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis, Anal. Chem., 84, 7954, 10.1021/ac301723s Karthick, 2018, Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis, Lab Chip, 18, 3802, 10.1039/C8LC00921J Austin, 2018, Clinical utility of non-EpCAM based circulating tumor cell assays, Adv. Drug Deliv. Rev., 125, 132, 10.1016/j.addr.2018.01.013 Kumar, 1996, The gap junction communication channel, Cell, 84, 381, 10.1016/S0092-8674(00)81282-9 Pawson, 1995, Protein modules and signalling networks, Nature, 373, 573, 10.1038/373573a0 Kurashina, 2017, Cell agglomeration in the wells of a 24-well plate using acoustic streaming, Lab Chip, 17, 876, 10.1039/C6LC01310D Kurashina, 2016, Efficient subculture process for adherent cells by selective collection using cultivation substrate vibration, IEEE Trans. Biomed. Eng., 64 Li, 2014, Standing surface acoustic wave based cell coculture, Anal. Chem., 86, 9853, 10.1021/ac502453z Kang, 2018, High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy, Nat. Commun., 9, 5402, 10.1038/s41467-018-07823-5 Collins, 2015, Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves, Nat. Commun., 6, 8686, 10.1038/ncomms9686 Chen, 2016, Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers, Lab Chip, 16, 2636, 10.1039/C6LC00444J Chen, 2019, High-throughput acoustofluidic fabrication of tumor spheroids, Lab Chip, 19, 1755, 10.1039/C9LC00135B Wu, 2018, Acoustic assembly of cell spheroids in disposable capillaries, Nanotechnology, 29, 504006, 10.1088/1361-6528/aae4f1 Fillafer, 2009, An acoustically-driven biochip – impact of flow on the cell-association of targeted drug carriers, Lab Chip, 9, 2782, 10.1039/b906006e Zhang, 2012, Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force, PLoS One, 7, e38343, 10.1371/journal.pone.0038343 Greco, 2018, Surface-acoustic-wave (SAW)-Driven device for dynamic cell cultures, Anal. Chem., 90, 7450, 10.1021/acs.analchem.8b00972 Stamp, 2016, Acoustotaxis – in vitro stimulation in a wound healing assay employing surface acoustic waves, Biomater. Sci., 4, 1092, 10.1039/C6BM00125D Li, 2014, Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering, Lab Chip, 14, 4475, 10.1039/C4LC00956H Jonnalagadda, 2018, Acoustically modulated biomechanical stimulation for human cartilage tissue engineering, Lab Chip, 18, 473, 10.1039/C7LC01195D Khedr, 2019, Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor, Biomicrofluidics, 13, 014112, 10.1063/1.5082603 Qi, 2009, Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization, Lab Chip, 9, 2184, 10.1039/b903575c Ang, 2015, Nozzleless spray cooling using surface acoustic waves, J. Aerosol Sci., 79, 48, 10.1016/j.jaerosci.2014.10.004 Cortez-Jugo, 2015, Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform, Biomicrofluidics, 9, 1, 10.1063/1.4917181 Rajapaksa, 2014, Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization, Respir. Res., 15, 60, 10.1186/1465-9921-15-60 Ramesan, 2018, High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery, Lab Chip, 18, 3272, 10.1039/C8LC00355F Ramesan, 2018, Acoustically-mediated intracellular delivery, Nanoscale, 10, 13165, 10.1039/C8NR02898B Bonnevier, 2018, 1 Goddard, 2007, Analytical performance of an ultrasonic particle focusing flow cytometer, Anal. Chem., 79, 8740, 10.1021/ac071402t Goddard, 2003, Ultrasonic particle concentration in a line driven cylindrical tube, J. Acoust. Soc. Am., 114, 10.1121/1.4777789 Ward, 2018, Fundamentals of acoustic cytometry, Curr. Protoc. Cytom., 84, e36, 10.1002/cpcy.36 Huang, 2015, An acoustofluidic sputum liquefier, Lab Chip, 15, 3125, 10.1039/C5LC00539F Li, 2016, Acoustofluidic transfer of inflammatory cells from human sputum samples, Anal. Chem., 88, 5655, 10.1021/acs.analchem.5b03383 Zhao, 2019, On-chip stool liquefaction via acoustofluidics, Lab Chip, 42 Karthick, 2018, Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation, Phys. Rev. Appl., 10, 034037, 10.1103/PhysRevApplied.10.034037 Olsen, 1958, Acoustic radiation force, J. Acoust. Soc. Am., 30, 633, 10.1121/1.1909718 Nyborg, 1958, Acoustic streaming near a boundary, J. Acoust. Soc. Am., 30, 329, 10.1121/1.1909587 Schwarz, 2013, Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes, J. Acoust. Soc. Am., 133, 1260, 10.1121/1.4776209 Läubli, 2017, Controlled three-dimensional rotation of single cells using acoustic waves, Proc. CIRP, 65, 93, 10.1016/j.procir.2017.04.028 Xie, 2012, Single-shot characterization of enzymatic reaction constants K m and k cat by an acoustic-driven, bubble-based fast micromixer, Anal. Chem., 84, 7495, 10.1021/ac301590y Schwed Lustgarten, 2013, Use of circulating tumor cell technology (CELLSEARCH) for the diagnosis of malignant pleural effusions, Ann. Am. Thorac. Soc., 10, 582, 10.1513/AnnalsATS.201303-068OC Farace, 2011, A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas, Br. J. Cancer, 105, 847, 10.1038/bjc.2011.294 Di Carlo, 2012, A mechanical biomarker of cell state in medicine, J. Lab. Autom., 17, 32, 10.1177/2211068211431630 Guo, 2013, Probing cell–cell communication with microfluidic devices, Lab Chip, 13, 3152, 10.1039/c3lc90067c Benam, 2016, Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro, Nat. Methods, 13, 151, 10.1038/nmeth.3697 Huh, 2011, From 3D cell culture to organs-on-chips, Trends Cell Biol., 21, 745, 10.1016/j.tcb.2011.09.005 Guo, 2015, Reusable acoustic tweezers for disposable devices, Lab Chip, 15, 4517, 10.1039/C5LC01049G Ma, 2016, Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave, Anal. Chem., 88, 5316, 10.1021/acs.analchem.6b00605 Mao, 2017, Enriching nanoparticles via acoustofluidics, ACS Nano, 11, 603, 10.1021/acsnano.6b06784 Jin, 2013, Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications, Sci. Rep., 3, 2140, 10.1038/srep02140 Huang, 2014, A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures, Lab Chip, 14, 4319, 10.1039/C4LC00806E Bachman, 2018, Acoustofluidic devices controlled by cell phones, Lab Chip, 18, 433, 10.1039/C7LC01222E Bachman, 2019, Open source acoustofluidics, Lab Chip, 10.1039/C9LC00340A