Acoustofluidic methods in cell analysis
Tài liệu tham khảo
Sibbitts, 2018, Cellular analysis using microfluidics, Anal. Chem., 90, 65, 10.1021/acs.analchem.7b04519
Mazzarello, 1999, A unifying concept: the history of cell theory, Nat. Cell Biol., 1, E13, 10.1038/8964
Gest, 2004, The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the royal society, Notes Rec. R. Soc. Lond., 58, 187, 10.1098/rsnr.2004.0055
Fulwyler, 1965, Electronic separation of biological cells by volume, Science (80), 150, 910, 10.1126/science.150.3698.910
Julius, 1972, Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter, Proc. Natl. Acad. Sci., 69, 1934, 10.1073/pnas.69.7.1934
Saiki, 1985, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science (80), 230, 1350, 10.1126/science.2999980
Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044
Macosko, 2015, Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets, Cell, 161, 1202, 10.1016/j.cell.2015.05.002
Bruus, 2011, Acoustofluidics 1: governing equations in microfluidics, Lab Chip, 11, 3742, 10.1039/c1lc20658c
Ozcelik, 2018, Acoustic tweezers for the life sciences, Nat. Methods, 15, 1021, 10.1038/s41592-018-0222-9
Kundt, 1866, Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen, Ann. Der Phys. Und Chemie., 203, 497, 10.1002/andp.18662030402
Barnes, 1949, Visual methods for studying ultrasonic phenomena, J. Appl. Phys., 20, 286, 10.1063/1.1698357
Shi, 2009, Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW), Lab Chip, 9, 2890, 10.1039/b910595f
Zhang, 2018, Digital acoustofluidics enables contactless and programmable liquid handling, Nat. Commun., 9, 2928, 10.1038/s41467-018-05297-z
Tian, 2019, Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells, Sci. Adv., 5, 10.1126/sciadv.aau6062
Habibi, 2017, Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave, Lab Chip, 17, 3279, 10.1039/C7LC00640C
Beyeler, 2007, Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field, J. Microelectromech. Syst., 16, 7, 10.1109/JMEMS.2006.885853
Shi, 2011, Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW), Lab Chip, 11, 2319, 10.1039/c1lc20042a
Shi, 2008, Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW), Lab Chip, 8, 221, 10.1039/B716321E
Agrawal, 2018, Continuous focusing of microparticles in horizontally actuated rectangular channels, Phys. Rev. Appl., 10, 1, 10.1103/PhysRevApplied.10.024036
Antfolk, 2014, Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis, Lab Chip, 14, 2791, 10.1039/C4LC00202D
Ding, 2014, Cell separation using tilted-angle standing surface acoustic waves, Proc. Natl. Acad. Sci., 111, 12992, 10.1073/pnas.1413325111
Wu, 2017, Isolation of exosomes from whole blood by integrating acoustics and microfluidics, Proc. Natl. Acad. Sci., 114, 10584, 10.1073/pnas.1709210114
Collins, 2014, Particle separation using virtual deterministic lateral displacement (vDLD), Lab Chip, 14, 1595, 10.1039/C3LC51367J
Thévoz, 2010, Acoustophoretic synchronization of mammalian cells in microchannels, Anal. Chem., 82, 3094, 10.1021/ac100357u
Shilton, 2008, Particle concentration and mixing in microdrops driven by focused surface acoustic waves, J. Appl. Phys., 104, 014910, 10.1063/1.2951467
Xie, 2013, Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles, Lab Chip, 13, 1772, 10.1039/c3lc00043e
Franke, 2010, Surface acoustic wave actuated cell sorting (SAWACS), Lab Chip, 10, 789, 10.1039/b915522h
Zhang, 2019, Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans, Lab Chip, 10.1039/C8LC01012A
He, 2017, In-line trapping and rotation of bio-particles via 3-D micro-vortices generated by localized ultrahigh frequency acoustic resonators, 1789
Ahmed, 2016, Rotational manipulation of single cells and organisms using acoustic waves, Nat. Commun., 7, 11085, 10.1038/ncomms11085
Xie, 2016, Probing cell deformability via acoustically actuated bubbles, Small, 12, 902, 10.1002/smll.201502220
Li, 2015, Acoustic separation of circulating tumor cells, Proc. Natl. Acad. Sci., 112, 4970, 10.1073/pnas.1504484112
Goddard, 2006, Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer, Cytom. Part A, 69A, 66, 10.1002/cyto.a.20205
Hiramatsu, 2019, High-throughput label-free molecular fingerprinting flow cytometry, Sci. Adv., 5, 10.1126/sciadv.aau0241
Guo, 2015, Controlling cell–cell interactions using surface acoustic waves, Proc. Natl. Acad. Sci., 112, 43, 10.1073/pnas.1422068112
Huang, 2018, A sharp-edge-based acoustofluidic chemical signal generator, Lab Chip, 18, 1411, 10.1039/C8LC00193F
Ahmed, 2014, Acoustofluidic chemical waveform generator and switch, Anal. Chem., 86, 11803, 10.1021/ac5033676
Mitsakakis, 2009, SAW device integrated with microfluidics for array-type biosensing, Microelectron. Eng., 86, 1416, 10.1016/j.mee.2008.12.063
Gizeli, 1997, Design considerations for the acoustic waveguide biosensor, Smart Mater. Struct., 6, 700, 10.1088/0964-1726/6/6/006
Sonato, 2016, A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor, Lab Chip, 16, 1224, 10.1039/C6LC00057F
Ashkin, 1987, Optical trapping and manipulation of viruses and bacteria, Science (80), 235, 1517, 10.1126/science.3547653
MacDonald, 2003, Microfluidic sorting in an optical lattice, Nature, 426, 421, 10.1038/nature02144
Ashkin, 1986, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett., 11, 288, 10.1364/OL.11.000288
Pethig, 1996, Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells, Crit. Rev. Biotechnol., 16, 331, 10.3109/07388559609147425
Wang, 1997, Dielectrophoretic manipulation of particles, IEEE Trans. Ind. Appl., 33, 660, 10.1109/28.585855
Bruus, 2012, Acoustofluidics 7: the acoustic radiation force on small particles, Lab Chip, 12, 1014, 10.1039/c2lc21068a
Wiklund, 2012, Acoustofluidics 14: applications of acoustic streaming in microfluidic devices, Lab Chip, 12, 2438, 10.1039/c2lc40203c
Lenshof, 2012, Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems, Lab Chip, 12, 1210, 10.1039/c2lc21256k
Bruus, 2011, Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation, Lab Chip, 11, 3579, 10.1039/c1lc90058g
Marx, 2015, Biophysics: using sound to move cells, Nat. Methods, 12, 41, 10.1038/nmeth.3218
Yeo, 2014, Surface acoustic wave microfluidics, Annu. Rev. Fluid Mech., 46, 379, 10.1146/annurev-fluid-010313-141418
Ding, 2013, Surface acoustic wave microfluidics, Lab Chip, 13, 3626, 10.1039/c3lc50361e
Destgeer, 2015, Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves, Lab Chip, 15, 2722, 10.1039/C5LC00265F
AlHasan, 2013, Surface acoustic streaming in microfluidic system for rapid multicellular tumor spheroids generation, 89235C
Wu, 2019, Acoustofluidic separation of cells and particles, Microsyst. Nanoeng., 5, 32, 10.1038/s41378-019-0064-3
Meng, 2019, Acoustic tweezers, J. Phys. D Appl. Phys., 52, 273001, 10.1088/1361-6463/ab16b5
Connacher, 2018, Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications, Lab Chip, 18, 1952, 10.1039/C8LC00112J
Li, 2019, Applications of acoustofluidics in bioanalytical chemistry, Anal. Chem., 91, 757, 10.1021/acs.analchem.8b03786
Friend, 2011, Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics, Rev. Mod. Phys., 83, 647, 10.1103/RevModPhys.83.647
Taller, 2015, On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis, Lab Chip, 15, 1656, 10.1039/C5LC00036J
Salehi-Reyhani, 2015, Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays, Anal. Chem., 87, 2161, 10.1021/ac5033758
Nee Tan, 2014, Bubble inducing cell lysis in a sessile droplet, Appl. Phys. Lett., 104, 103704, 10.1063/1.4868407
Deng, 2004, Ultrasound-induced cell membrane porosity, Ultrasound Med. Biol., 30, 519, 10.1016/j.ultrasmedbio.2004.01.005
Fan, 2012, Spatiotemporally controlled single cell sonoporation, Proc. Natl. Acad. Sci., 109, 16486, 10.1073/pnas.1208198109
Zhang, 2017, Hypersonic poration: a new versatile cell poration method to enhance cellular uptake using a piezoelectric nano-electromechanical device, Small, 13, 1602962, 10.1002/smll.201602962
Lu, 2019, Hypersonic poration of supported lipid bilayers, Mater. Chem. Front., 3, 782, 10.1039/C8QM00589C
Lu, 2019, Controlled and tunable loading and release of vesicles by using gigahertz acoustics, Angew. Chem. Int. Ed., 58, 159, 10.1002/anie.201810181
Dijkmans, 2004, Microbubbles and ultrasound: from diagnosis to therapy, Eur. J. Echocardiogr., 5, 245, 10.1016/j.euje.2004.02.001
Tomizawa, 2013, Sonoporation: gene transfer using ultrasound, World J. Methodol., 3, 39, 10.5662/wjm.v3.i4.39
Liang, 2010, Sonoporation, drug delivery, and gene therapy, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 224, 343, 10.1243/09544119JEIM565
Länge, 2008, Surface acoustic wave biosensors: a review, Anal. Bioanal. Chem., 391, 1509, 10.1007/s00216-008-1911-5
Go, 2017, Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective, Anal. Meth., 9, 4112, 10.1039/C7AY00690J
Minsky, 1988, Memoir on inventing the confocal scanning microscope, Scanning, 10, 128, 10.1002/sca.4950100403
Hoffman, 2006, Confocal laser endomicroscopy: technical status and current indications, Endoscopy, 38, 1275, 10.1055/s-2006-944813
Ozcelik, 2016, Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures, Small, 12, 5120, 10.1002/smll.201601760
Schwarz, 2014, Rotation of fibers and other non-spherical particles by the acoustic radiation torque, Microfluid. Nanofluidics, 18, 65, 10.1007/s10404-014-1408-9
Zmijan, 2015, High throughput imaging cytometer with acoustic focussing, RSC Adv., 5, 83206, 10.1039/C5RA19497K
Olson, 2017, Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles, Limnol Oceanogr. Methods, 15, 867, 10.1002/lom3.10205
Lambert, 2017, A fluorescence-activated cell sorting subsystem for the Imaging FlowCytobot, Limnol Oceanogr. Methods, 15, 94, 10.1002/lom3.10145
Ozcan, 2014, Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools, Lab Chip, 14, 3187, 10.1039/C4LC00010B
Adamo, 2012, Microfluidics-based assessment of cell deformability, Anal. Chem., 84, 6438, 10.1021/ac300264v
Grover, 2011, Measuring single-cell density, Proc. Natl. Acad. Sci., 108, 10992, 10.1073/pnas.1104651108
Cross, 2007, Nanomechanical analysis of cells from cancer patients, Nat. Nanotechnol., 2, 780, 10.1038/nnano.2007.388
Suresh, 2007, Biomechanics and biophysics of cancer cells, Acta Biomater., 3, 413, 10.1016/j.actbio.2007.04.002
Lee, 2007, Biomechanics approaches to studying human diseases, Trends Biotechnol., 25, 111, 10.1016/j.tibtech.2007.01.005
Kang, 2019, Noninvasive monitoring of single-cell mechanics by acoustic scattering, Nat. Methods, 16, 263, 10.1038/s41592-019-0326-x
Hartono, 2011, On-chip measurements of cell compressibility via acoustic radiation, Lab Chip, 11, 4072, 10.1039/c1lc20687g
Wang, 2019, A continuous-flow acoustofluidic cytometer for single-cell mechanotyping, Lab Chip, 19, 387, 10.1039/C8LC00711J
Augustsson, 2016, Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping, Nat. Commun., 7, 11556, 10.1038/ncomms11556
Baasch, 2018, Acoustic compressibility of Caenorhabditis elegans, Biophys. J., 115, 1817, 10.1016/j.bpj.2018.08.048
Kamsma, 2018, Single-cell acoustic force spectroscopy: resolving kinetics and strength of T cell adhesion to fibronectin, Cell Rep., 24, 3008, 10.1016/j.celrep.2018.08.034
Sitters, 2015, Acoustic force spectroscopy, Nat. Methods, 12, 47, 10.1038/nmeth.3183
Kamsma, 2016, Tuning the music: acoustic force spectroscopy (AFS) 2.0, Methods, 105, 26, 10.1016/j.ymeth.2016.05.002
Sorkin, 2018, Probing cellular mechanics with acoustic force spectroscopy, Mol. Biol. Cell, 29, 2005, 10.1091/mbc.E18-03-0154
Ravetto, 2014, Monocytic cells become less compressible but more deformable upon activation, PLoS One, 9, e92814, 10.1371/journal.pone.0092814
Cristofanilli, 2004, Circulating tumor cells, disease progression, and survival in metastatic breast cancer, N. Engl. J. Med., 351, 781, 10.1056/NEJMoa040766
Murlidhar, 2014, A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells, Small, 10, 4895, 10.1002/smll.201400719
Stott, 2010, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Proc. Natl. Acad. Sci., 107, 18392, 10.1073/pnas.1012539107
Li, 2013, Probing circulating tumor cells in microfluidics, Lab Chip, 13, 602, 10.1039/c2lc90148j
Wu, 2018, Circulating tumor cell phenotyping via high-throughput acoustic separation, Small, 14, 1801131, 10.1002/smll.201801131
Antfolk, 2015, Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells, Anal. Chem., 87, 9322, 10.1021/acs.analchem.5b02023
Antfolk, 2015, A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells, Lab Chip, 15, 2102, 10.1039/C5LC00078E
Augustsson, 2012, Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis, Anal. Chem., 84, 7954, 10.1021/ac301723s
Karthick, 2018, Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis, Lab Chip, 18, 3802, 10.1039/C8LC00921J
Austin, 2018, Clinical utility of non-EpCAM based circulating tumor cell assays, Adv. Drug Deliv. Rev., 125, 132, 10.1016/j.addr.2018.01.013
Kumar, 1996, The gap junction communication channel, Cell, 84, 381, 10.1016/S0092-8674(00)81282-9
Pawson, 1995, Protein modules and signalling networks, Nature, 373, 573, 10.1038/373573a0
Kurashina, 2017, Cell agglomeration in the wells of a 24-well plate using acoustic streaming, Lab Chip, 17, 876, 10.1039/C6LC01310D
Kurashina, 2016, Efficient subculture process for adherent cells by selective collection using cultivation substrate vibration, IEEE Trans. Biomed. Eng., 64
Li, 2014, Standing surface acoustic wave based cell coculture, Anal. Chem., 86, 9853, 10.1021/ac502453z
Kang, 2018, High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy, Nat. Commun., 9, 5402, 10.1038/s41467-018-07823-5
Collins, 2015, Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves, Nat. Commun., 6, 8686, 10.1038/ncomms9686
Chen, 2016, Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers, Lab Chip, 16, 2636, 10.1039/C6LC00444J
Chen, 2019, High-throughput acoustofluidic fabrication of tumor spheroids, Lab Chip, 19, 1755, 10.1039/C9LC00135B
Wu, 2018, Acoustic assembly of cell spheroids in disposable capillaries, Nanotechnology, 29, 504006, 10.1088/1361-6528/aae4f1
Fillafer, 2009, An acoustically-driven biochip – impact of flow on the cell-association of targeted drug carriers, Lab Chip, 9, 2782, 10.1039/b906006e
Zhang, 2012, Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force, PLoS One, 7, e38343, 10.1371/journal.pone.0038343
Greco, 2018, Surface-acoustic-wave (SAW)-Driven device for dynamic cell cultures, Anal. Chem., 90, 7450, 10.1021/acs.analchem.8b00972
Stamp, 2016, Acoustotaxis – in vitro stimulation in a wound healing assay employing surface acoustic waves, Biomater. Sci., 4, 1092, 10.1039/C6BM00125D
Li, 2014, Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering, Lab Chip, 14, 4475, 10.1039/C4LC00956H
Jonnalagadda, 2018, Acoustically modulated biomechanical stimulation for human cartilage tissue engineering, Lab Chip, 18, 473, 10.1039/C7LC01195D
Khedr, 2019, Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor, Biomicrofluidics, 13, 014112, 10.1063/1.5082603
Qi, 2009, Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization, Lab Chip, 9, 2184, 10.1039/b903575c
Ang, 2015, Nozzleless spray cooling using surface acoustic waves, J. Aerosol Sci., 79, 48, 10.1016/j.jaerosci.2014.10.004
Cortez-Jugo, 2015, Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform, Biomicrofluidics, 9, 1, 10.1063/1.4917181
Rajapaksa, 2014, Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization, Respir. Res., 15, 60, 10.1186/1465-9921-15-60
Ramesan, 2018, High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery, Lab Chip, 18, 3272, 10.1039/C8LC00355F
Ramesan, 2018, Acoustically-mediated intracellular delivery, Nanoscale, 10, 13165, 10.1039/C8NR02898B
Bonnevier, 2018, 1
Goddard, 2007, Analytical performance of an ultrasonic particle focusing flow cytometer, Anal. Chem., 79, 8740, 10.1021/ac071402t
Goddard, 2003, Ultrasonic particle concentration in a line driven cylindrical tube, J. Acoust. Soc. Am., 114, 10.1121/1.4777789
Ward, 2018, Fundamentals of acoustic cytometry, Curr. Protoc. Cytom., 84, e36, 10.1002/cpcy.36
Huang, 2015, An acoustofluidic sputum liquefier, Lab Chip, 15, 3125, 10.1039/C5LC00539F
Li, 2016, Acoustofluidic transfer of inflammatory cells from human sputum samples, Anal. Chem., 88, 5655, 10.1021/acs.analchem.5b03383
Zhao, 2019, On-chip stool liquefaction via acoustofluidics, Lab Chip, 42
Karthick, 2018, Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation, Phys. Rev. Appl., 10, 034037, 10.1103/PhysRevApplied.10.034037
Olsen, 1958, Acoustic radiation force, J. Acoust. Soc. Am., 30, 633, 10.1121/1.1909718
Nyborg, 1958, Acoustic streaming near a boundary, J. Acoust. Soc. Am., 30, 329, 10.1121/1.1909587
Schwarz, 2013, Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes, J. Acoust. Soc. Am., 133, 1260, 10.1121/1.4776209
Läubli, 2017, Controlled three-dimensional rotation of single cells using acoustic waves, Proc. CIRP, 65, 93, 10.1016/j.procir.2017.04.028
Xie, 2012, Single-shot characterization of enzymatic reaction constants K m and k cat by an acoustic-driven, bubble-based fast micromixer, Anal. Chem., 84, 7495, 10.1021/ac301590y
Schwed Lustgarten, 2013, Use of circulating tumor cell technology (CELLSEARCH) for the diagnosis of malignant pleural effusions, Ann. Am. Thorac. Soc., 10, 582, 10.1513/AnnalsATS.201303-068OC
Farace, 2011, A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas, Br. J. Cancer, 105, 847, 10.1038/bjc.2011.294
Di Carlo, 2012, A mechanical biomarker of cell state in medicine, J. Lab. Autom., 17, 32, 10.1177/2211068211431630
Guo, 2013, Probing cell–cell communication with microfluidic devices, Lab Chip, 13, 3152, 10.1039/c3lc90067c
Benam, 2016, Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro, Nat. Methods, 13, 151, 10.1038/nmeth.3697
Huh, 2011, From 3D cell culture to organs-on-chips, Trends Cell Biol., 21, 745, 10.1016/j.tcb.2011.09.005
Guo, 2015, Reusable acoustic tweezers for disposable devices, Lab Chip, 15, 4517, 10.1039/C5LC01049G
Ma, 2016, Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave, Anal. Chem., 88, 5316, 10.1021/acs.analchem.6b00605
Mao, 2017, Enriching nanoparticles via acoustofluidics, ACS Nano, 11, 603, 10.1021/acsnano.6b06784
Jin, 2013, Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications, Sci. Rep., 3, 2140, 10.1038/srep02140
Huang, 2014, A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures, Lab Chip, 14, 4319, 10.1039/C4LC00806E
Bachman, 2018, Acoustofluidic devices controlled by cell phones, Lab Chip, 18, 433, 10.1039/C7LC01222E
Bachman, 2019, Open source acoustofluidics, Lab Chip, 10.1039/C9LC00340A