Acoustic and thermal characterization of a novel sustainable material incorporating recycled microplastic waste
Tài liệu tham khảo
Ahmad, 2014, A review on applications of ANN and SVM for building electrical energy consumption forecasting, Renew. Sust. Energ. Rev., 33, 102, 10.1016/j.rser.2014.01.069
Ahmetli, 2013, Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources, Polym. Compos., 34, 500, 10.1002/pc.22452
Ajith, 2020, Global distribution of microplastics and its impact on marine environment—a review, Environ. Sci. Pollut. Res., 27, 25970, 10.1007/s11356-020-09015-5
Al-Humeidawi, 2014, Utilization of waste plastic and recycle concrete aggregate in production of hot mix asphalt, Al-Qadisiyah J. Eng. Sci., 7
Alimba, 2019, Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile, Environ. Toxicol. Pharmacol., 68, 61, 10.1016/j.etap.2019.03.001
Allard, 2009
Almanza, 2004, Measurement of the thermal diffusivity and specific heat capacity of polyethylene foams using the transient plane source technique, Polym. Int., 53, 2038, 10.1002/pi.1624
Almond, 1996
Amasyali, 2018, A review of data-driven building energy consumption prediction studies, Renew. Sust. Energ. Rev., 81, 1192, 10.1016/j.rser.2017.04.095
American Society for Testing and Materials International, 2017
Andersen, 2012, Ionically gelled alginate foams: physical properties controlled by operational and macromolecular parameters, Biomacromolecules, 13, 3703, 10.1021/bm301194f
Andrady, 2017, The plastic in microplastics: a review, Mar. Pollut. Bull., 119, 12, 10.1016/j.marpolbul.2017.01.082
Arthur, 2009, Proceedings of the international research workshop on the occurrence, effects and fate of microplastic marine debris
Asdrubali, 2015, A review of unconventional sustainable building insulation materials, Sustain. Mater. Technol., 4, 1
Awal, 2016, Green concrete production incorporating waste carpet fiber and palm oil fuel ash, J. Clean. Prod., 137, 157, 10.1016/j.jclepro.2016.06.162
Bachmat, 1987, On the concept and size of a representative elementary volume (rev), 3
Becerik-Gerber, 2014, Civil engineering grand challenges: opportunities for data sensing, information analysis, and knowledge discovery, J. Comput. Civ. Eng., 28, 10.1061/(ASCE)CP.1943-5487.0000290
Binici, 2014, An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres, Constr. Build. Mater., 51, 24, 10.1016/j.conbuildmat.2013.10.038
Brown, 2003, Emergy indices and ratios for sustainable material cycles and recycle options, Resour. Conserv. Recycl., 38, 1, 10.1016/S0921-3449(02)00093-9
Burton, 2020
Caniato, 2019
Carslaw, 1959
Catanzano, 2018, Macroporous alginate foams crosslinked with strontium for bone tissue engineering, Carbohydr. Polym., 202, 72, 10.1016/j.carbpol.2018.08.086
Ceccaldi, 2017, Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering, Int. J. Pharm., 524, 433, 10.1016/j.ijpharm.2017.02.060
Champoux, 1991, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys., 70, 1975, 10.1063/1.349482
Chandni, 2018, Utilization of recycled waste as filler in foam concrete, J. Building Eng., 19, 154, 10.1016/j.jobe.2018.04.032
Chatterjee, 2019, Heat conduction model based on percolation theory for thermal conductivity of composites with high volume fraction of filler in base matrix, Int. J. Therm. Sci., 136, 389, 10.1016/j.ijthermalsci.2018.09.015
Cheng, 2016, The equivalent thermal conductivity of lattice core sandwich structure: a predictive model, Appl. Therm. Eng., 93, 236, 10.1016/j.applthermaleng.2015.10.002
Chu, 2020, Enhanced fractal capillary bundle model for effective thermal conductivity of composite-porous geomaterials, Int. Communicat. Heat Mass Trans., 113, 104527, 10.1016/j.icheatmasstransfer.2020.104527
Cozzarini, 2020, Life cycle analysis of a novel thermal insulator obtained from recycled glass waste, Develop. Built Environ., 3, 100014, 10.1016/j.dibe.2020.100014
Curlee, 1986
Dauvergne, 2018, Why is the global governance of plastic failing the oceans?, Glob. Environ. Chang., 51, 22, 10.1016/j.gloenvcha.2018.05.002
de Carvalho, 2020, Development of an acoustic absorbing material based on sunflower residue following the cleaner production techniques, J. Clean. Prod., 270, 122478, 10.1016/j.jclepro.2020.122478
Dehaut, 2019, Current frontiers and recommendations for the study of microplastics in seafood, TrAC Trends Anal. Chem., 116, 346, 10.1016/j.trac.2018.11.011
Dijkgraaf, 2004, Burn or bury? A social cost comparison of waste disposal methods, Ecol. Econ., 50, 233, 10.1016/j.ecolecon.2004.03.029
El-Naga, 2019, Benefits of utilization the recycle polyethylene terephthalate waste plastic materials as a modifier to asphalt mixtures, Constr. Build. Mater., 219, 81, 10.1016/j.conbuildmat.2019.05.172
Erni-Cassola, 2019, Distribution of plastic polymer types in the marine environment; a meta-analysis, J. Hazard. Mater., 369, 691, 10.1016/j.jhazmat.2019.02.067
EU Commission, 2018
Fongang, 2015, Cleaner production of the lightweight insulating composites: microstructure, pore network and thermal conductivity, Ener. Build., 107, 113, 10.1016/j.enbuild.2015.08.009
Franke, 1999, Improvement of carbon burn-up during fluidized bed incineration of plastic by using porous bed materials, Energy Fuel, 13, 773, 10.1021/ef980179n
Gago, 2016, Microplastics in seawater: recommendations from the marine strategy framework directive implementation process, Front. Mar. Sci., 3, 10.3389/fmars.2016.00219
Gama, 2015, Bio-based polyurethane foams toward applications beyond thermal insulation, Mater. Des., 76, 77, 10.1016/j.matdes.2015.03.032
Gao, 2017, Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing, Food Hydrocoll., 63, 414, 10.1016/j.foodhyd.2016.09.023
Gong, 2016, Recycling of waste amber glass and porcine bone into fast sintered and high strength glass foams, J. Clean. Prod., 112, 4534, 10.1016/j.jclepro.2015.09.052
Grant, 1973, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett., 32, 195, 10.1016/0014-5793(73)80770-7
Hadley, 1986, Thermal conductivity of packed metal powders, Int. J. Heat Mass Transf., 29, 909, 10.1016/0017-9310(86)90186-9
Hahladakis, 2020, Delineating and preventing plastic waste leakage in the marine and terrestrial environment, Environ. Sci. Pollut. Res., 27, 12830, 10.1007/s11356-020-08139-y
Halim Hamid, 2020
Hasheminia, 2012, Preparation and characterisation of diopside-based glass–ceramic foams, Ceram. Int., 38, 2005, 10.1016/j.ceramint.2011.10.035
Hassan, 2011, Measurement and targeting of thermophysical properties of carrot and meat based alginate particles for thermal processing applications, J. Food Eng., 107, 117, 10.1016/j.jfoodeng.2011.05.028
Hsu, 1994, Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media, Int. J. Heat Mass Transf., 37, 2751, 10.1016/0017-9310(94)90392-1
International Organization for Standardization, 2001
Italian Government, 2019
Jiang, 2018, Occurrence of microplastics and its pollution in the environment: a review, Sust. Product. Consumpt., 13, 16, 10.1016/j.spc.2017.11.003
Johnson, 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379, 10.1017/S0022112087000727
Jouybari, 2020, Investigation of thermal dispersion and intra-pore turbulent heat flux in porous media, Int. J. Heat Fluid Flow, 81, 108523, 10.1016/j.ijheatfluidflow.2019.108523
Lagarias, 1998, Convergence properties of the Nelder--Mead simplex method in low dimensions, SIAM J. Optim., 9, 112, 10.1137/S1052623496303470
Li, 2020, Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method, Int. J. Heat Mass Transf., 151, 119383, 10.1016/j.ijheatmasstransfer.2020.119383
Marín, 2006, Thermal physics concepts: the role of the thermal Effusivity, Phys. Teach., 44, 432, 10.1119/1.2353583
Meric, 2018, Sustainable technologies for recycling and reuse: an overview, Environ. Sci. Pollut. Res., 25, 2993, 10.1007/s11356-017-0770-z
Morris, 2017, Recycle, Bury, or burn wood waste biomass?: LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs, J. Ind. Ecol., 21, 844, 10.1111/jiec.12469
O’Brine, 2010, Degradation of plastic carrier bags in the marine environment, Mar. Pollut. Bull., 60, 2279, 10.1016/j.marpolbul.2010.08.005
Ogunola, 2016, Microplastics in the marine environment: current status, assessment methodologies, impacts and solutions, J. Pollut. Effects & Control, 4, 1000161
Oh, 2020, Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application, Int. J. Biol. Macromol., 156, 1565, 10.1016/j.ijbiomac.2019.11.206
Olivas, 2008, Alginate–calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity, LWT Food Sci. Technol., 41, 359, 10.1016/j.lwt.2007.02.015
Oliveira, 2019, The why and how of micro(nano)plastic research, TrAC Trends Anal. Chem., 114, 196, 10.1016/j.trac.2019.02.023
Omran, 2016, Performance of glass-powder concrete in field applications, Constr. Build. Mater., 109, 84, 10.1016/j.conbuildmat.2016.02.006
Østergaard, 2020, High-speed synchrotron X-ray imaging of glass foaming and thermal conductivity simulation, Acta Mater., 189, 85, 10.1016/j.actamat.2020.02.060
Porrelli, 2015, Alginate–hydroxyapatite bone scaffolds with isotropic or anisotropic pore structure: material properties and biological behavior, Macromol. Mater. Eng., 300, 989, 10.1002/mame.201500055
Prociak, 2000, Thermal diffusivity of rigid polyurethane foams blown with different hydrocarbons, Polym. Test., 19, 705, 10.1016/S0142-9418(99)00042-2
Qu, 2016, Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique, Ceram. Int., 42, 2370, 10.1016/j.ceramint.2015.10.034
Rasmussen, 2010, Sound insulation between dwellings – requirements in building regulations in Europe, Appl. Acoust., 71, 373, 10.1016/j.apacoust.2009.08.011
Rinaudo, 2008, Main properties and current applications of some polysaccharides as biomaterials, Polym. Int., 57, 397, 10.1002/pi.2378
Rohsenow, 1985
Russell, 1935, Principles of heat flow in porous insulators*, J. Am. Ceram. Soc., 18, 1, 10.1111/j.1151-2916.1935.tb19340.x
Salazar, 2003, On thermal diffusivity, Eur. J. Phys., 24, 351, 10.1088/0143-0807/24/4/353
Singh, 2017, Recycling of plastic solid waste: a state of art review and future applications, Compos. Part B, 115, 409, 10.1016/j.compositesb.2016.09.013
Souza, 2018, Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: a cleaner production alternative, J. Clean. Prod., 193, 549, 10.1016/j.jclepro.2018.05.087
Travan, 2016, Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications, Carbohydr. Polym., 150, 408, 10.1016/j.carbpol.2016.03.088
Turco, 2009, Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity, Biomacromolecules, 10, 1575, 10.1021/bm900154b
Wang, 2020, Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance, Int. J. Heat Mass Transf., 155, 119853, 10.1016/j.ijheatmasstransfer.2020.119853
Woodside, 1961, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys., 32, 1688, 10.1063/1.1728419
Xiao, 2013, Morphologies and thermal characterization of paraffin/carbon foam composite phase change material, Solar Energy Materials and Solar Cells, Dye Sensitized Solar Cells, Organic, Hybrid Solar Cells and New Concepts, 117, 451, 10.1016/j.solmat.2013.06.037
Yang, 2018, Lattice Boltzmann simulation of asymptotic longitudinal mass dispersion in reconstructed random porous media, AICHE J., 64, 2770, 10.1002/aic.16088
Yang, 2010, A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media, Int. J. Heat Mass Transf., 53, 3222, 10.1016/j.ijheatmasstransfer.2010.03.004
