Acoustic and mechanical metamaterials for energy harvesting and self-powered sensing applications

Materials Today Energy - Tập 37 - Trang 101387 - 2023
Geon Lee1, Seong-Jin Lee2, Junsuk Rho1,3,4, Miso Kim2,5
1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
3Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
4POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
5SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

Tài liệu tham khảo

Veselago, 1968, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp., 10, 509, 10.1070/PU1968v010n04ABEH003699 Shelby, 2001, Experimental verification of a negative index of refraction, Science, 292, 77, 10.1126/science.1058847 Cummer, 2016, Controlling sound with acoustic metamaterials, Nat. Rev. Mater., 1, 10.1038/natrevmats.2016.1 Brunet, 2015, Soft 3D acoustic metamaterial with negative index, Nat. Mater., 14, 384, 10.1038/nmat4164 Liu, 2000, Locally resonant sonic materials, Science, 289, 1734, 10.1126/science.289.5485.1734 Ma, 2016, Acoustic metamaterials: from local resonances to broad horizons, Sci. Adv., 2, 10.1126/sciadv.1501595 Ma, 2014, Acoustic metasurface with hybrid resonances, Nat. Mater., 13, 873, 10.1038/nmat3994 Kadic, 2019, 3D metamaterials, Nature Reviews Physics, 1, 198, 10.1038/s42254-018-0018-y Bertoldi, 2017, Flexible mechanical metamaterials, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.66 Choi, 2019, A brief review of sound energy harvesting, Nano Energy, 56, 169, 10.1016/j.nanoen.2018.11.036 Chen, 2014, Metamaterials-based enhanced energy harvesting: a review, Phys. B Condens. Matter, 438, 1, 10.1016/j.physb.2013.12.040 Hu, 2021, Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review, Smart Mater. Struct., 30, 10.1088/1361-665X/ac0cbc Tabak, 2023, An extensive review of piezoelectric energy-harvesting structures utilizing auxetic materials, Journal of Vibration Engineering & Technologies, 1 Pishvar, 2020, Foundations for soft, smart matter by active mechanical metamaterials, Adv. Sci., 7, 10.1002/advs.202001384 Jiang, 2022, Flexible metamaterial electronics, Adv. Mater., 34, 10.1002/adma.202200070 Yablonovitch, 1989, Photonic band structure: the face-centered-cubic case, Phys. Rev. Lett., 63, 1950, 10.1103/PhysRevLett.63.1950 Yablonovitch, 1991, Photonic band structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., 67, 2295, 10.1103/PhysRevLett.67.2295 Yablonovitch, 1993, Photonic band-gap structures, J. Opt. Soc. Am. B, 10, 283, 10.1364/JOSAB.10.000283 Russell, 2003, Photonic crystal fibers, science, 299, 358, 10.1126/science.1079280 Qi, 2004, A three-dimensional optical photonic crystal with designed point defects, Nature, 429, 538, 10.1038/nature02575 Noda, 2007, Spontaneous-emission control by photonic crystals and nanocavities, Nat. Photonics, 1, 449, 10.1038/nphoton.2007.141 Born, 1946, Wave propagation in periodic structures, Nature, 158, 10.1038/158926a0 Bragg, 1913, The reflection of X-rays by crystals, Proc. R. Soc. Lond. - Ser. A Contain. Pap. a Math. Phys. Character, 88, 428 Mohammadi, 2008, Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates, Appl. Phys. Lett., 92, 10.1063/1.2939097 D'Alessandro, 2016, Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal, Appl. Phys. Lett., 109, 10.1063/1.4971290 Jang, 2022, Impulse mitigation in nonlinear composite-based woodpile phononic crystals, Appl. Phys. Lett., 121, 10.1063/5.0101307 Khelif, 2004, Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Appl. Phys. Lett., 84, 4400, 10.1063/1.1757642 Charles, 2006, Propagation of guided elastic waves in 2D phononic crystals, Ultrasonics, 44, e1209, 10.1016/j.ultras.2006.05.096 Hsiao, 2007, Waveguiding inside the complete band gap of a phononic crystal slab, Phys. Rev., 76 Pennec, 2004, Tunable filtering and demultiplexing in phononic crystals with hollow cylinders, Phys. Rev., 69 Pennec, 2005, Acoustic channel drop tunneling in a phononic crystal, Appl. Phys. Lett., 87, 10.1063/1.2158019 Zhang, 2013, Broadband wave filtering of bioinspired hierarchical phononic crystal, Appl. Phys. Lett., 102 Wu, 2009, Acoustic energy harvesting using resonant cavity of a sonic crystal, Appl. Phys. Lett., 95 Wu, 2009, Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal, Phys. B Condens. Matter, 404, 1766, 10.1016/j.physb.2009.02.025 Aly, 2018, The significance of temperature dependence on the piezoelectric energy harvesting by using a phononic crystal, J. Appl. Phys., 123, 10.1063/1.5019623 Motaei, 2022, Energy harvesting from sonic noises by phononic crystal fibers, Sci. Rep., 12, 10.1038/s41598-022-14134-9 Lv, 2013, Vibration energy harvesting using a phononic crystal with point defect states, Appl. Phys. Lett., 102, 10.1063/1.4788810 Park, 2019, Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting, Nano Energy, 57, 327, 10.1016/j.nanoen.2018.12.026 Lee, 2020, Enhanced energy transfer and conversion for high performance phononic crystal-assisted elastic wave energy harvesting, Nano Energy, 78, 10.1016/j.nanoen.2020.105226 Jo, 2020, Designing a phononic crystal with a defect for energy localization and harvesting: supercell size and defect location, Int. J. Mech. Sci., 179, 10.1016/j.ijmecsci.2020.105670 Jo, 2020, Elastic wave localization and harvesting using double defect modes of a phononic crystal, J. Appl. Phys., 127, 10.1063/5.0003688 Ma, 2020, Flexural wave energy harvesting by multi-mode elastic metamaterial cavities, Extreme Mechanics Letters, 41, 10.1016/j.eml.2020.101073 Lee, 2023, Multiband elastic wave energy localization for highly amplified piezoelectric energy harvesting using trampoline metamaterials, Mech. Syst. Signal Process., 200, 10.1016/j.ymssp.2023.110593 Shi, 2008, Wide-band acoustic collimating by phononic crystal composites, Appl. Phys. Lett., 92, 10.1063/1.2895019 Hyun, 2020, Partitioned gradient-index phononic crystals for full phase control, Sci. Rep., 10, 10.1038/s41598-020-71397-w Bucay, 2009, Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: theoretical and experimental study, Phys. Rev. B, 79, 10.1103/PhysRevB.79.214305 Li, 2015, Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect, J. Appl. Phys., 118, 10.1063/1.4932138 Yang, 2004, Focusing of sound in a 3D phononic crystal, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.024301 Sukhovich, 2008, Negative refraction and focusing of ultrasound in two-dimensional phononic crystals, Phys. Rev. B, 77, 10.1103/PhysRevB.77.014301 Lin, 2009, Gradient-index phononic crystals, Phys. Rev. B, 79, 10.1103/PhysRevB.79.094302 Wu, 2011, Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate, Appl. Phys. Lett., 98, 10.1063/1.3583660 Hyun, 2020, Gradient-index phononic crystals for omnidirectional acoustic wave focusing and energy harvesting, Appl. Phys. Lett., 116 Danawe, 2020, Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures, Appl. Phys. Lett., 117, 10.1063/5.0012316 Allam, 2021, Sound energy harvesting by leveraging a 3D-printed phononic crystal lens, Appl. Phys. Lett., 118, 10.1063/5.0030698 Tol, 2017, Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting, Appl. Phys. Lett., 111, 10.1063/1.4991684 Tol, 2019, 3D-printed phononic crystal lens for elastic wave focusing and energy harvesting, Addit. Manuf., 29 Hyun, 2019, Gradient-index phononic crystals for highly dense flexural energy harvesting, Appl. Phys. Lett., 115, 10.1063/1.5111566 Ma, 2022, Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens, Int. J. Mech. Sci., 227, 10.1016/j.ijmecsci.2022.107435 Carrara, 2012, Dramatic enhancement of structure-borne wave energy harvesting using an elliptical acoustic mirror, Appl. Phys. Lett., 100, 10.1063/1.4719098 Carrara, 2013, Metamaterial-inspired structures and concepts for elastoacoustic wave energy harvesting, Smart Mater. Struct., 22, 10.1088/0964-1726/22/6/065004 Carrara, 2015, Fourier transform-based design of a patterned piezoelectric energy harvester integrated with an elastoacoustic mirror, Appl. Phys. Lett., 106, 10.1063/1.4905509 Park, 2022, Double-focusing gradient-index lens with elastic Bragg mirror for highly efficient energy harvesting, Nanomaterials, 12, 1019, 10.3390/nano12061019 He, 2018, Topological negative refraction of surface acoustic waves in a Weyl phononic crystal, Nature, 560, 61, 10.1038/s41586-018-0367-9 Jin, 2018, Robustness of conventional and topologically protected edge states in phononic crystal plates, Phys. Rev. B, 98, 10.1103/PhysRevB.98.054307 Muhammad, 2019, Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves, Int. J. Mech. Sci., 159, 359, 10.1016/j.ijmecsci.2019.05.020 Wen, 2022, Topological cavities in phononic plates for robust energy harvesting, Mech. Syst. Signal Process., 162, 10.1016/j.ymssp.2021.108047 Ma, 2022, Flexural wave energy harvesting by the topological interface state of a phononic crystal beam, Extreme Mechanics Letters, 50, 10.1016/j.eml.2021.101578 Wang, 2015, Topological phononic crystals with one-way elastic edge waves, Phys. Rev. Lett., 115, 10.1103/PhysRevLett.115.104302 Yan, 2018, On-chip valley topological materials for elastic wave manipulation, Nat. Mater., 17, 993, 10.1038/s41563-018-0191-5 Javadi, 2018, Realization of enhanced sound-driven CNT-based triboelectric nanogenerator, utilizing sonic array configuration, Curr. Appl. Phys., 18, 361, 10.1016/j.cap.2018.01.018 Zhu, 2022, A triboelectric nanogenerator sensor based on phononic crystal structures for smart buildings and transportation systems, Nano Energy, 97, 10.1016/j.nanoen.2022.107165 Geng, 2019, Flexural wave manipulation and energy harvesting characteristics of a defect phononic crystal beam with thermal effects, J. Appl. Phys., 125, 10.1063/1.5063949 Geng, 2021, Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments, J. Phys. D Appl. Phys., 54, 10.1088/1361-6463/abe1e7 Geng, 2022, Thermally-induced transitions of multi-frequency defect wave localization and energy harvesting of phononic crystal plate, Int. J. Mech. Sci., 222, 10.1016/j.ijmecsci.2022.107253 Arroyo, 2012, Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments, Sensor Actuator Phys., 183, 148, 10.1016/j.sna.2012.04.033 Moss, 2015, Scaling and power density metrics of electromagnetic vibration energy harvesting devices, Smart Mater. Struct., 24, 10.1088/0964-1726/24/2/023001 Alaie, 2016, Enhancing mechanical quality factors of micro-toroidal optomechanical resonators using phononic crystals, J. Microelectromech. Syst., 25, 311, 10.1109/JMEMS.2015.2504332 Pendry, 2000, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85, 3966, 10.1103/PhysRevLett.85.3966 Smith, 2003, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.077405 Smith, 2004, Metamaterials and negative refractive index, Science, 305, 788, 10.1126/science.1096796 Pendry, 2004, A chiral route to negative refraction, Science, 306, 1353, 10.1126/science.1104467 Shalaev, 2007, Optical negative-index metamaterials, Nat. Photonics, 1, 41, 10.1038/nphoton.2006.49 Zhang, 2008, Superlenses to overcome the diffraction limit, Nat. Mater., 7, 435, 10.1038/nmat2141 Liu, 2005, Analytic model of phononic crystals with local resonances, Phys. Rev. B, 71 Huang, 2009, On the negative effective mass density in acoustic metamaterials, Int. J. Eng. Sci., 47, 610, 10.1016/j.ijengsci.2008.12.007 Li, 2004, Double-negative acoustic metamaterial, Phys. Rev., 70 Ding, 2007, Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.093904 Cheng, 2008, One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus, Phys. Rev. B, 77, 10.1103/PhysRevB.77.045134 Babaee, 2013, 3D soft metamaterials with negative Poisson's ratio, Adv. Mater., 25, 5044, 10.1002/adma.201301986 Yasuda, 2015, Reentrant origami-based metamaterials with negative Poisson's ratio and bistability, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.185502 Hewage, 2016, Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties, Adv. Mater., 28, 10323, 10.1002/adma.201603959 Qi, 2016, Acoustic energy harvesting based on a planar acoustic metamaterial, Appl. Phys. Lett., 108, 10.1063/1.4954987 Oudich, 2017, Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate, J. Phys. Appl. Phys., 50 Sun, 2017, Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity, Smart Mater. Struct., 26, 10.1088/1361-665X/aa724e Wu, 1975, Investigation of the spectrum of resonance fluorescence induced by a monochromatic field, Phys. Rev. Lett., 35, 1426, 10.1103/PhysRevLett.35.1426 Chen, 2006, Vibration-induced elastic deformation of Fabry-Perot cavities, Phys. Rev., 74 Xiao, 2023, Metamaterial based piezoelectric acoustic energy harvesting: electromechanical coupled modeling and experimental validation, Mech. Syst. Signal Process., 185, 10.1016/j.ymssp.2022.109808 Li, 2016, Acoustic metamaterials capable of both sound insulation and energy harvesting, Smart Mater. Struct., 25, 10.1088/0964-1726/25/4/045013 Yuan, 2018, Acoustic metastructure for effective low-frequency acoustic energy harvesting, J. Low Freq. Noise Vib. Act. Control, 37, 1015 Wang, 2019, A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials, Smart Mater. Struct., 28 Viet, 2016, Energy harvesting from ocean waves by a floating energy harvester, Energy, 112, 1219, 10.1016/j.energy.2016.07.019 Wang, 2021, Exploring the potential benefits of using metasurface for galloping energy harvesting, Energy Convers. Manag., 243, 10.1016/j.enconman.2021.114414 Tang, 2022, Energy harvesting from flow-induced vibrations enhanced by meta-surface structure under elastic interference, Int. J. Mech. Sci., 236, 10.1016/j.ijmecsci.2022.107749 Ahmed, 2014, Low frequency energy scavenging using sub-wave length scale acousto-elastic metamaterial, AIP Adv., 4, 10.1063/1.4901915 Li, 2017, Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting, Appl. Phys. Lett., 111, 10.1063/1.5008674 Chen, 2019, A metamaterial structure capable of wave attenuation and concurrent energy harvesting, J. Intell. Mater. Syst. Struct., 30, 2973, 10.1177/1045389X19880023 Chen, 2020, Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting, Mech. Syst. Signal Process., 143, 10.1016/j.ymssp.2020.106824 De Ponti, 2020, Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting, Appl. Phys. Lett., 117, 10.1063/5.0023544 Zhao, 2022, A graded metamaterial for broadband and high-capability piezoelectric energy harvesting, Energy Convers. Manag., 269, 10.1016/j.enconman.2022.116056 Kildishev, 2013, Planar photonics with metasurfaces, Science, 339, 10.1126/science.1232009 Lin, 2014, Dielectric gradient metasurface optical elements, Science, 345, 298, 10.1126/science.1253213 Wang, 2017, Broadband achromatic optical metasurface devices, Nat. Commun., 8, 187, 10.1038/s41467-017-00166-7 Zhu, 2017, Ultrathin acoustic metasurface-based schroeder diffuser, Phys. Rev. X, 7 Assouar, 2018, Acoustic metasurfaces, Nat. Rev. Mater., 3, 460, 10.1038/s41578-018-0061-4 Liu, 2017, Source illusion devices for flexural Lamb waves using elastic metasurfaces, Phys. Rev. Lett., 119 Yuan, 2020, Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation, J. Sound Vib., 470, 10.1016/j.jsv.2019.115168 Lee, 2020, Broad-angle refractive transmodal elastic metasurface, Appl. Phys. Lett., 117, 10.1063/5.0026928 Lee, 2018, Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering, J. Mech. Phys. Solid., 112, 577, 10.1016/j.jmps.2017.11.025 Cao, 2021, Pillared elastic metasurface with constructive interference for flexural wave manipulation, Mech. Syst. Signal Process., 146, 10.1016/j.ymssp.2020.107035 Yuan, 2022, Reconfigurable flexural waves manipulation by broadband elastic metasurface, Mech. Syst. Signal Process., 179, 10.1016/j.ymssp.2022.109371 Jin, 2021, Elastic metasurfaces for deep and robust subwavelength focusing and imaging, Phys. Rev. Appl., 15, 10.1103/PhysRevApplied.15.024005 Yang, 2013, Enhanced acoustic energy harvesting using coupled resonance structure of sonic crystal and Helmholtz resonator, APEX, 6 Li, 2021, Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial, Nano Energy, 90, 10.1016/j.nanoen.2021.106523 Ma, 2021, Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting, Nano Energy, 82, 10.1016/j.nanoen.2020.105693 Ma, 2020, Acoustic energy harvesting enhanced by locally resonant metamaterials, Smart Mater. Struct., 29, 10.1088/1361-665X/ab8fcc Kim, 2022, Gradient-index phononic crystal and Helmholtz resonator coupled structure for high-performance acoustic energy harvesting, Nano Energy, 101, 10.1016/j.nanoen.2022.107544 Chaplain, 2020, Topological rainbow trapping for elastic energy harvesting in graded su-schrieffer-heeger systems, Phys. Rev. Appl., 14, 10.1103/PhysRevApplied.14.054035 Lan, 2021, Energy localization and topological protection of a locally resonant topological metamaterial for robust vibration energy harvesting, J. Appl. Phys., 129, 10.1063/5.0047965 Xu, 2022, Multifunctional metamaterials for energy harvesting and vibration control, Adv. Funct. Mater., 32 Yuan, 2022, Triboelectric nanogenerator metamaterials for joint structural vibration mitigation and self-powered structure monitoring, Nano Energy, 103, 10.1016/j.nanoen.2022.107773 Hu, 2018, Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting, J. Appl. Phys., 123, 10.1063/1.5011999 Sugino, 2018, Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting, J. Phys. Appl. Phys., 51 Lu, 2021, A dual-functional metamaterial for integrated vibration isolation and energy harvesting, J. Sound Vib., 509, 10.1016/j.jsv.2021.116251 Yu, 2018, Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review, Prog. Mater. Sci., 94, 114, 10.1016/j.pmatsci.2017.12.003 Meza, 2014, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science, 345, 1322, 10.1126/science.1255908 Hahn, 2021, Two-step absorption instead of two-photon absorption in 3D nanoprinting, Nat. Photonics, 15, 932, 10.1038/s41566-021-00906-8 Zheng, 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 1373, 10.1126/science.1252291 Lakes, 2008, Negative compressibility, negative Poisson's ratio, and stability, Phys. Status Solidi, 245, 545, 10.1002/pssb.200777708 Milton, 1995, Which elasticity tensors are realizable?, J. Eng. Mater. Technol., 117, 483, 10.1115/1.2804743 Lakes, 1987, Foam structures with a negative Poisson's ratio, Science, 235, 1038, 10.1126/science.235.4792.1038 Gibson, 1982, The mechanics of two-dimensional cellular materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382, 25, 10.1098/rspa.1982.0087 Yasuda, 2021, Mechanical computing, Nature, 598, 39, 10.1038/s41586-021-03623-y Chen, 2021, A reprogrammable mechanical metamaterial with stable memory, Nature, 589, 386, 10.1038/s41586-020-03123-5 Kadic, 2012, On the practicability of pentamode mechanical metamaterials, Appl. Phys. Lett., 100, 10.1063/1.4709436 Frenzel, 2017, Three-dimensional mechanical metamaterials with a twist, Science, 358, 1072, 10.1126/science.aao4640 Shan, 2015, Multistable architected materials for trapping elastic strain energy, Adv. Mater., 27, 4296, 10.1002/adma.201501708 Overvelde, 2017, Rational design of reconfigurable prismatic architected materials, Nature, 541, 347, 10.1038/nature20824 Blees, 2015, Graphene kirigami, Nature, 524, 204, 10.1038/nature14588 Lakes, 2017, Negative-Poisson's-Ratio materials: auxetic solids, Annu. Rev. Mater. Res., 47, 63, 10.1146/annurev-matsci-070616-124118 Ren, 2018, Auxetic metamaterials and structures: a review, Smart Mater. Struct., 27, 10.1088/1361-665X/aaa61c Jiang, 2022, Manufacturing, characteristics and applications of auxetic foams: a state-of-the-art review, Compos. B Eng., 235, 10.1016/j.compositesb.2022.109733 Wang, 2020, Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications, Adv. Eng. Mater., 22, 10.1002/adem.202000312 Grima, 2000, Auxetic behavior from rotating squares, J. Mater. Sci. Lett., 19, 1563, 10.1023/A:1006781224002 Spadoni, 2012, Elasto-static micropolar behavior of a chiral auxetic lattice, J. Mech. Phys. Solid., 60, 156, 10.1016/j.jmps.2011.09.012 Larsen, 1997, Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio, J. Microelectromech. Syst., 6, 99, 10.1109/84.585787 Theocaris, 1997, Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach, Arch. Appl. Mech., 67, 274, 10.1007/s004190050117 Smith, 2000, A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model, Acta Mater., 48, 4349, 10.1016/S1359-6454(00)00269-X Meena, 2019, A new auxetic structure with significantly reduced stress concentration effects, Mater. Des., 173, 10.1016/j.matdes.2019.107779 Papadopoulou, 2017, Auxetic materials in design and architecture, Nat. Rev. Mater., 2, 10.1038/natrevmats.2017.78 Lin, 2020, 4D printing of personalized shape memory polymer vascular stents with negative Poisson's ratio structure: a preliminary study, Sci. China Technol. Sci., 63, 578, 10.1007/s11431-019-1468-2 Liu, 2023, Controllable three-dimension auxetic structure design strategies based on triply periodic minimal surfaces and the application in hip implant, Virtual Phys. Prototyp., 18, 10.1080/17452759.2023.2170890 Kapnisi, 2018, Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction, Adv. Funct. Mater., 28, 10.1002/adfm.201800618 Ferro, 2022, Design of cellular materials for multiscale topology optimization: application to patient-specific orthopedic devices, Struct. Multidiscip. Optim., 65, 79, 10.1007/s00158-021-03163-z Hanna, 2021, Auxetic metamaterial optimisation for head impact mitigation in American football, Int. J. Impact Eng., 157, 10.1016/j.ijimpeng.2021.103991 Yousuf, 2020, 4D printed auxetic structures with tunable mechanical properties, Addit. Manuf., 35 Jiang, 2018, Auxetic mechanical metamaterials to enhance sensitivity of stretchable strain sensors, Adv. Mater., 30, 10.1002/adma.201706589 Wong, 2019, 3D printing Ionogel auxetic frameworks for stretchable sensors, Advanced Materials Technologies, 4, 10.1002/admt.201900452 Lee, 2019, Graphene-based stretchable/wearable self-powered touch sensor, Nano Energy, 62, 259, 10.1016/j.nanoen.2019.05.039 Ko, 2015, Design and fabrication of auxetic stretchable force sensor for hand rehabilitation, Smart Mater. Struct., 24, 10.1088/0964-1726/24/7/075027 Han, 2020, High-performance, biaxially stretchable conductor based on Ag composites and hierarchical auxetic structure, J. Mater. Chem. C, 8, 1556, 10.1039/C9TC06036G Li, 2016, Poisson ratio and piezoresistive sensing: a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability, Adv. Funct. Mater., 26, 2900, 10.1002/adfm.201505070 Verma, 2022, Synthesis and characterization of carbon nanotube-doped thermoplastic nanocomposites for the additive manufacturing of self-sensing piezoresistive materials, ACS Appl. Mater. Interfaces, 14, 8361, 10.1021/acsami.1c20491 Wu, 2022, Tailoring auxetic mechanical metamaterials to achieve patterned wire strain sensors with controllable high sensitivity, Chem. Eng. J., 442, 10.1016/j.cej.2022.136317 Kim, 2018, Hygroscopic auxetic on-skin sensors for easy-to-handle repeated daily use, ACS Appl. Mater. Interfaces, 10, 40141, 10.1021/acsami.8b13857 Li, 2017, Auxetic piezoelectric energy harvesters for increased electric power output, AIP Adv., 7 Ferguson, 2018, Auxetic structure for increased power output of strain vibration energy harvester, Sensor Actuator Phys., 282, 90, 10.1016/j.sna.2018.09.019 Kabirian, 2022, Inlay-inspired meta-piezoelectric plates for the low-frequency vibration energy harvesting, J. Mater. Sci. Mater. Electron., 33, 2909, 10.1007/s10854-021-07489-8 Eghbali, 2020, Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting, Sci. Rep., 10, 10.1038/s41598-020-73425-1 Ebrahimian, 2021, Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation, Appl. Energy, 295, 10.1016/j.apenergy.2021.117010 Sadikbasha, 2022, Auxetic hexachiral cantilever beams for piezoelectric vibration energy harvesting, Smart Mater. Struct., 31, 10.1088/1361-665X/ac8d3e Tikariha, 2022, Effect of auxetic structures parameters variation on PVDF-based piezoelectric energy harvesters, J. Appl. Phys., 132, 10.1063/5.0119742 Chen, 2021, An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth, Appl. Energy, 298, 10.1016/j.apenergy.2021.117274 Chen, 2022, An enhanced nonlinear piezoelectric energy harvester with multiple rotating square unit cells, Mech. Syst. Signal Process., 173, 10.1016/j.ymssp.2022.109065 Chen, 2022, Enhancing power output of piezoelectric energy harvesting by gradient auxetic structures, Appl. Phys. Lett., 120 Chung, 2021, Triangulated cylinder origami-based piezoelectric/triboelectric hybrid generator to harvest coupled axial and rotational motion, Research, 10.34133/2021/7248579 Tao, 2020, Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting, Nano Energy, 67, 10.1016/j.nanoen.2019.104197 Zhang, 2020, Origami-tessellation-based triboelectric nanogenerator for energy harvesting with application in road pavement, Nano Energy, 78, 10.1016/j.nanoen.2020.105177 Wu, 2016, Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns, ACS Nano, 10, 4652, 10.1021/acsnano.6b00949 Hu, 2018, Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: design, analysis, and performance, Phys. Rev. Appl., 9, 10.1103/PhysRevApplied.9.021002 Xu, 2021, Implantable cardiac kirigami-inspired lead-based energy harvester fabricated by enhanced piezoelectric composite film, Adv. Healthcare Mater., 10 Peng, 2022, Kirigami-based flexible, high-performance piezoelectric/triboelectric hybrid nanogenerator for mechanical energy harvesting and multifunctional self-powered sensing, Energy Technol., 10, 10.1002/ente.202200372 Zhou, 2020, All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure, Nano Energy, 72, 10.1016/j.nanoen.2020.104676 Yang, 2015, A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring, Adv. Mater., 27, 3817, 10.1002/adma.201500652 Wang, 2022, Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion, Advanced Materials Technologies, 7, 10.1002/admt.202200650 Barri, 2022, Patient-specific self-powered metamaterial implants for detecting bone healing progress, Adv. Funct. Mater., 32 Jiao, 2020, Mechanical metamaterial piezoelectric nanogenerator (MM-PENG): design principle, modeling and performance, Mater. Des., 187, 10.1016/j.matdes.2019.108214 Jiao, 2021, Mechanical metamaterials gyro-structure piezoelectric nanogenerators for energy harvesting under quasi-static excitations in ocean engineering, ACS Omega, 6, 15348, 10.1021/acsomega.1c01687 Tao, 2020, Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators, Adv. Funct. Mater., 30, 10.1002/adfm.202001720 Barri, 2023, Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure, Adv. Mater., 35, 10.1002/adma.202211027 Yang, 2017, On the efficiency of piezoelectric energy harvesters, Extreme Mechanics Letters, 15, 26, 10.1016/j.eml.2017.05.002 Yang, 2018, High-performance piezoelectric energy harvesters and their applications, Joule, 2, 642, 10.1016/j.joule.2018.03.011 Fernandez-Corbaton, 2019, New twists of 3D chiral metamaterials, Adv. Mater., 31, 10.1002/adma.201807742 Jeon, 2022, Synergistic energy absorption mechanisms of architected liquid crystal elastomers, Adv. Mater., 34, 10.1002/adma.202200272 Jiao, 2021, Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends, Int. Mater. Rev., 66, 365, 10.1080/09506608.2020.1815394 Mao, 2020, Designing complex architectured materials with generative adversarial networks, Sci. Adv., 6, 10.1126/sciadv.aaz4169 Lee, 2022, Machine learning-enabled development of high performance gradient-index phononic crystals for energy focusing and harvesting, Nano Energy, 103, 10.1016/j.nanoen.2022.107846 Askari, 2020, Additive manufacturing of metamaterials: a review, Addit. Manuf., 36 Fan, 2021, A review of additive manufacturing of metamaterials and developing trends, Mater. Today, 50, 303, 10.1016/j.mattod.2021.04.019 Tol, 2016, Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting, Appl. Phys. Lett., 109, 10.1063/1.4960792 Eghbali, 2020, Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators, Appl. Energy, 270, 10.1016/j.apenergy.2020.115217