Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)

Journal of Geophysical Research F: Earth Surface - Tập 123 Số 6 - Trang 1363-1385 - 2018
Samuel Weber1, Jérôme Faillettaz1, Matthias Meyer2, Jan Beutel2, Andreas Vieli1
1Department of Geography, University of Zurich, Zurich, Switzerland
2Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland

Tóm tắt

Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and therefore complement surface displacement data. This study investigates for the first time acoustic and microseismic signals generated in steep, fractured bedrock permafrost, covering the broad frequency range of 1 − 105 Hz. The analysis of artificial forcing experiments using a rebound hammer in a controlled setting led to two major findings: First, statistically insignificant cross correlation between signals indicates that waveforms change strongly with propagation distance. Second, a significant amplification is found in the frequency band 33–67 Hz. This finding is strongly supported by evidence from artificial rockfall events and more importantly by naturally occurring fracture events identified in fracture displacement data. Thus, filtering this frequency band enables enhanced detection of microseismic events relevant for slope stability assessment. The analysis of 2‐year time series in this frequency band further suggests that the detected energy rate baseline of all automatically triggered events using the STA/LTA algorithm is not sensitive to temperature forcing, an observation of primary importance for long‐term data collection, analysis, and interpretation. The event detection in the established frequency band is not only improved but also not affected by the short‐ and long‐term temperature changes in such a rapidly changing environment.

Từ khóa


Tài liệu tham khảo

10.1080/00018730300741518

10.5194/nhess-10-831-2010

10.1029/2004GL022270

10.1016/j.epsl.2012.06.014

10.5194/nhess-9-1119-2009

Ashford S. A., 1997, Topographic effects on the seismic response of steep slopes, Bulletin of the Seismological Society of America, 87, 701, 10.1785/BSSA0870030701

Beutel J. Gruber S. Hasler A. Lim R. Meier A. Plessl C. et al. (2009).PermaDAQ: A scientific instrument for precision sensing and data recovery in environmental extremes. InThe 8Th ACM/IEEE International Conference on Information Processing in Sensor Networks San Francisco California USA pp.265–276.

10.1016/j.geomorph.2013.11.014

Bucher K., 2004, Blatt 1347, Matterhorn. Geol. Atlas Schweiz 1:25 000, Erläut 107

10.1093/gji/ggu014

10.1093/gji/ggx424

10.1029/2009WR007889

10.1029/2011JF002037

10.3189/172756400781820462

10.1016/j.enggeo.2014.05.010

10.5194/esurf-5-653-2017

10.1680/geng.2003.156.2.83

10.1680/jgeen.14.00152

Dobrin M., 1960, Introduction to geophysical prospecting, Geophysical Journal International, 3, 378

10.5194/tc-6-1163-2012

10.1002/2016GL072050

10.1002/ppp.1814

10.1016/S1365-1609(03)00076-5

10.1201/9780203885284-c3

10.1007/978-3-662-04639-5

Evans A. G., 1979, Fundamentals of acoustic emission, 209

10.1103/PhysRevE.91.032134

10.1002/2015GL067435

10.3189/002214308786570845

10.3189/002214311796905668

10.1111/j.1365-246X.2006.02865.x

10.5194/gi-1-155-2012

10.1002/grl.50384

10.1029/2011JF002006

10.5194/nhess-10-819-2010

10.1007/978-3-540-69972-9_1

10.1029/2006JF000547

10.1002/ppp.3430020404

10.1201/9780203971109

10.1029/2011JF001981

10.5194/tc-5-977-2011

Hasler A. Talzi I. Beutel J. Tschudin C. &Gruber S.(2008).Wireless sensor networks in permafrost research: Concept requirements implementation and challenges. InProceedings of the 9Th International Conference on Permafrost 2008 Fairbanks Alaska(pp.669–674).

10.1103/PhysRevE.65.046148

10.1785/0120120109

Kleinbrod U. Burjánek J. &Fäh D.(2017).From ambient vibration assessment of potential rock slope instabilities to earthquake triggered rockslides. In16th World conference on earthquake engineering(pp.2216).

10.1190/1.1438647

10.1002/esp.3374

10.1088/1749-4699/8/1/014003

10.1209/epl/i2003-00469-9

LeBlanc D., 2004, Statistics: Concepts and applications for science

10.1029/2009JF001606

10.1016/0148-9062(93)90041-B

10.1038/350039a0

10.1029/2011JF002159

10.5194/tc-2018-57

10.1002/ppp.620

10.1016/j.earscirev.2012.02.009

10.1029/2011JF002259

Moore J., 2012, Proceedings 11th International & 2nd North American Symposium on Landslides, 869

10.1785/0120110127

10.1016/B0-44-452747-8/00113-7

10.1002/2016JF003948

10.1126/science.1132127

10.1029/JB075i008p01351

10.1016/j.enggeo.2010.04.019

Obert L.(1977).The microseismic method: Discovery and early history. InProceedings First Conference on Acoustic Emission/Microseismic Activity in Geologic Structures and Materials Clausthal‐Zellerfeld Germany(pp.11–12) .

ObsPy T.(2017). ObsPy: A Python toolbox for seismology/seismological observatories.https://doi.org/10.5281/zenodo.165134

10.5194/nhess-12-2283-2012

10.1029/JB087iB05p03873

PERMOS(2016).Permafrost in Switzerland 2010/2011 to 2013/2014.InJ. Noetzli R. Luethi &B. Staub(Eds.) Glaciological Report Permafrost No. 12‐15 of the Cryospheric Commission of the Swiss Academy of Sciences (p.85).

10.1029/2011JF002201

10.5194/nhess-4-147-2004

10.1007/s00531-006-0106-6

10.1002/2016RG000526

10.1103/RevModPhys.82.499

10.1103/PhysRevLett.95.125501

Proceq(2017).Portable non‐destructive concrete testing instruments. Sales flyer Proceq SA Switzerland.

10.1016/j.coldregions.2014.12.002

Rinehart J. S., 1975, Stress transients in solids, 230

10.3189/2014JoG13J210

10.1029/2006JF000642

10.3189/002214308784409053

10.1029/JB073i004p01417

10.1680/jgeot.15.P.200

10.1029/2006JB004723

10.5194/nhess-15-905-2015

10.1016/S1365-1609(03)00023-6

10.3189/002214311796405933

10.3189/002214308785837110

10.5194/tc-11-567-2017

Weber S. Beutel J. Gruber S. Gsell T. Hasler A. &Vieli A.(2018).Rock‐temperature fracture displacement and acoustic/micro‐seismic data measured at Matterhorn Hörnligrat. Switzerland.https://doi.org/10.5281/zenodo.1163037

Weber S., 2012, proceedings of the 10th International Conference on Permafrost, 437

Weber S. &Meyer M.(2018).Python3 code for the analysis of acoustic and micro‐seismic data measured at Matterhorn Hörnligrat. Switzerland.https://doi.org/10.5281/zenodo.1215643

10.1007/BFb0104208

10.1785/BSSA0880010095

Zoppè G. Costa G. Dixon N. Spriggs M. P. &Marcato G.(2015).Microseismicity and acoustic emission for landslide monitoring (Northeast Italy). (pp.1527–1530).Cham:Springer International Publishing.https://doi.org/10.1007/978-3-319-09057-3_270