Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp hạt nano bạc từ Aconitum lycoctonum L. (Họ Mao lương) bằng phương pháp sinh học và khả năng chống oxi hóa, chống viêm, kháng khuẩn và hạ đường huyết
Tóm tắt
Trong nghiên cứu này, một chiết xuất phân cực từ Aconitum lycoctonum L. đã được sử dụng để tổng hợp hạt nano bạc (AgNPs), tiếp theo là phân tích chúng bằng các kỹ thuật khác nhau và đánh giá tiềm năng của chúng như các chất chống oxi hóa, ức chế amylase, chất chống viêm và kháng khuẩn. Sự hình thành AgNPs được phát hiện qua sự thay đổi màu sắc, từ trong suốt sang nâu đậm, trong vòng 15 phút và một đỉnh cộng hưởng bề mặt tại 460 nm trong phổ UV–hiển vi. Các phổ FTIR đã xác nhận sự tham gia của nhiều phân tử sinh học trong quá trình tổng hợp AgNPs. Đường kính trung bình của các AgNPs hình cầu này là 67 nm, như được thể hiện qua hình chụp điện tử quét. Các vùng ức chế cho thấy các nanoparticle tổng hợp đã ức chế sự phát triển của vi khuẩn Gram dương và Gram âm. Các thử nghiệm FRAP và DPPH đã được sử dụng để chứng minh tiềm năng chống oxi hóa của AgNPs. Giá trị FRAP cao nhất (50,47% AAE/mL) được phát hiện tại nồng độ 90 ppm và hoạt động quét DPPH đạt 69,63% GAE tại nồng độ 20 µg/mL của AgNPs tổng hợp. 500 µg/mL của AgNPs tổng hợp khá hiệu quả trong việc gây 91,78% biến tính ovalbumin. AgNPs do A. lycoctonum trung gian cũng cho thấy tác dụng ức chế trên α-amylase. Do đó, AgNPs tổng hợp từ A. lycoctonum có thể là các ứng cử viên tiềm năng cho các tác nhân kháng khuẩn, chống oxi hóa, chống viêm và hạ đường huyết.
Từ khóa
#Aconitum lycoctonum #hạt nano bạc #chống oxi hóa #chống viêm #kháng khuẩn #hạ đường huyếtTài liệu tham khảo
Vélez MA, Perotti MC, Santiago L, Gennaro AM, Hynes E. Bioactive compounds delivery using nanotechnology: design and applications in dairy food. In: Nutrient delivery. Elsevier; 2017. p. 221–50.
Stadler L, Homafar M, Hartl A, Najafishirtari S, Colombo M, Zboril R, et al. Recyclable magnetic microporous organic polymer (MOP) encapsulated with palladium nanoparticles and Co/C nanobeads for hydrogenation reactions. ACS Sustain Chem Eng. 2018;7:2388–99.
Das Purkayastha M, Manhar AK. Nanotechnological applications in food packaging, sensors and bioactive delivery systems. Nanosci food Agric. 2016;2:59–128.
Chatterjee S, Rokhum SL. Extraction of a cardanol based liquid bio-fuel from waste natural resource and decarboxylation using a silver-based catalyst. Renew Sustain Energy Rev. 2017;72:560–4.
Bagheri S, Julkapli NM. Modified iron oxide nanomaterials: functionalization and application. J Magn Magn Mater. 2016;416:117–33.
Ingle AP, Biswas A, Vanlalveni C, Lalfakzuala R, Gupta I, Ingle P, et al. Biogenic synthesis of nanoparticles and their role in the management of plant pathogenic fungi. Microb Nanotechnol. 2020;135–61.
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7:17–28.
Ghaffar S, Abbas A, Naeem-ul-Hassan M, Assad N, Sher M, Ullah S, et al. Improved photocatalytic and antioxidant activity of olive fruit extract-mediated ZnO nanoparticles. Antioxidants. 2023;12:1201.
Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, et al. Seaweeds: a resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95:45–57.
Ahmed S, Ikram S. Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B Biol. 2016;161:141–53.
Pathak G, Rajkumari K, Rokhum SL. Wealth from waste: M. acuminata peel waste-derived magnetic nanoparticles as a solid catalyst for the Henry reaction. Nanoscale Adv. 2019;1:1013–20.
Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 2021;11:2804–37.
Mikhailova EO. Silver nanoparticles: mechanism of action and probable bio-application. J Funct Biomater. 2020;11:84.
Moradi F, Sedaghat S, Moradi O, Arab SS. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. Inorg Nano-Metal Chem. 2021;51:133–42.
Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, et al. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif cells, nanomedicine, Biotechnol. 2018;46:855–72.
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials. 2021;11:2086.
Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015;19:31–7.
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.
Kumar B, Smita K, Cumbal L, Debut A. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biol Sci. 2014;21:605–9.
Sen S, Chakraborty R, Maramsa N, Basak M, Deka S, Dey BK. In vitro anti-inflammatory activity of Amaranthus caudatus L. leaves. Indian J Nat Prod Resour. 2015;6:326–9.
Jemaa HB, Jemia AB, Khlifi S, Ahmed HB, Slama FB, Benzarti A, et al. Antioxidant activity and α-amylase inhibitory potential of Rosa canina L. Afr J Tradit Complement Altern Med. 2017;14:1–8.
Wulandari L, Pratoko DK, Khairunnisa P, Muyasaroh L. Determination α-amylase inhibitor activity of methanol extract of coffee leaves using UV-Vis spectrophotometric method and validation. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2021. p. 12094.
Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017;7:1–13.
Rastogi L, Arunachalam J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater Chem Phys. 2011;129:558–63.
Kanagamani K, Muthukrishnan P, Shankar K, Kathiresan A, Barabadi H, Saravanan M. Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J Clust Sci. 2019;30:1415–24.
Das D, Haydar MS, Mandal P. Impact of physical attributes on proficient phytosynthesis of silver nanoparticles using extract of fresh mulberry leaves: characterization, stability and bioactivity assessment. J Inorg Organomet Polym Mater. 2021;31:1527–48.
Dehelean A, Rada S, Zagrai M, Suciu R, Molnar C. Concentration dependent spectroscopic properties of terbium ion doped lead-borate glasses and vitroceramics. Anal Lett. 2021;54:88–97.
Nguyen TM-T, Huynh TT-T, Dang C-H, Mai D-T, Nguyen TT-N, Nguyen D-T, et al. Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Res Chem Intermed. 2020;46:1975–90.
Pradheesh G, Suresh S, Suresh J, Alexramani V. Antimicrobial and anticancer activity studies on green synthesized silver oxide nanoparticles from the medicinal plant Cyathea nilgiriensis Holttum. Int J Pharm Investig. 2020;10:146.
Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci. 2016;6:399–408.
Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng. 2019;7: 103094.
Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surfaces B Biointerfaces. 2018;171:398–405.
Boulmokh Y, Belguidoum K, Meddour F, Amira-Guebailia H. Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem. 2021;32:1907–23.
Kumar B, Smita K, Cumbal L, Debut A. Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. Bionanoscience. 2016;6:15–21.
Konappa N, Udayashankar AC, Dhamodaran N, Krishnamurthy S, Jagannath S, Uzma F, et al. Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules. 2021;11:535.
Sangeetha G, Vidhya R. In vitro anti-inflammatory activity of different parts of Pedalium murex (L.). Inflammation. 2016;4:31–6.
Sharifi-Rad M, Pohl P, Epifano F, Álvarez-Suarez JM. Green synthesis of silver nanoparticles using Astragalus tribuloides delile. root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials. 2020;10:2383.
Govindappa M, Naga SS, Poojashri MN, Sadananda TS, Chandrappa CP. Antimicrobial, antioxidant and in vitro anti-inflammatory activity of ethanol extract and active phytochemical screening of Wedelia trilobata (L.) Hitchc. J Pharmacogn Phyther. 2011;3:43–51.
Gwatidzo L, Chowe L, Musekiwa C, Mukaratirwa-Muchanyereyi N. In vitro anti-inflammatory activity of Vangueria infausta: an edible wild fruit from Zimbabwe. Afr J Pharm Pharmacol. 2018;12:168–75.
Kedi PBE, Meva FE, Kotsedi L, Nguemfo EL, Zangueu CB, Ntoumba AA, et al. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int J Nanomedicine. 2018;13:8537–48.
Gulati V, Harding IH, Palombo EA. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. Bmc Complement Altern Med. 2012;12:1–9.
Ali H, Houghton PJ, Soumyanath A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Nzor JN. Phytochemical constituents, antidiabetic and ameliorative effects of Polyalthia longifiola leaf extract in alloxan-induced diabetic rats. J Appl Sci Environ Manag. 2018;22:993–8.
Ajiboye BO, Ojo OA, Fatoba B, Afolabi OB, Olayide I, Okesola MA, et al. In vitro antioxidant and enzyme inhibitory properties of the n-butanol fraction of Senna podocarpa (Guill. and Perr.) leaf. J Basic Clin Physiol Pharmacol. 2019;31:20190123.
Singh AK, Rana HK, Singh V, Yadav TC, Varadwaj P, Pandey AK. Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies. Comput Biol Med. 2021;134: 104462.
Hegazy WAH, Rajab AAH, Lila ASA, Abbas HA. Anti-diabetics and antimicrobials: Harmony of mutual interplay. World J Diabetes. 2021;12:1832.
Kiran MS, Latha MS, Gokavi NB, Pujar GH, Kumar CRR, Shwetha UR, et al. Facile green synthesis and characterization of Moringa oliefera extract-capped silver nanoparticles (MO-Agnps) and its biological applications. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2020. p. 12055.
Vijayakumar S, Divya M, Vaseeharan B, Chen J, Biruntha M, Silva LP, et al. Biological compound capping of silver nanoparticle with the seed extracts of blackcumin (Nigella sativa): a potential antibacterial, antidiabetic, anti-inflammatory, and antioxidant. J Inorg Organomet Polym Mater. 2021;31:624–35.
Mishra SK, Sinha S, Singh AK, Upadhyay P, Kalra D, Kumar P, et al. Green synthesis, characterization, and application of Ascophyllum nodosum silver nanoparticles. Regen Eng Transl Med. 2023;:1–15.
Sooraj MP, Nair AS, Vineetha D. Sunlight-mediated green synthesis of silver nanoparticles using Sida retusa leaf extract and assessment of its antimicrobial and catalytic activities. Chem Pap. 2021;75:351–3.
Chirumamilla P, Dharavath SB, Taduri S. Eco-friendly green synthesis of silver nanoparticles from leaf extract of Solanum khasianum: optical properties and biological applications. Appl Biochem Biotechnol. 2023;195:353–68.
Naik JR, David M. Green synthesis of silver nanoparticles using Caesalpinia bonducella leaf extract: characterization and evaluation of in vitro anti-inflammatory and anti-cancer activities. Inorg Nano-Metal Chem. 2022;1–11.
Maheshwaran G, Bharathi AN, Selvi MM, Kumar MK, Kumar RM, Sudhahar S. Green synthesis of silver oxide nanoparticles using Zephyranthes rosea flower extract and evaluation of biological activities. J Environ Chem Eng. 2020;8: 104137.