Acid polishing of lead glass

Jonathan A. Ward1, A. C. Fowler1, S. O’Brien1
1MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland

Tóm tắt

Abstract Purpose The polishing of cut lead glass crystal is effected through the dowsing of the glass in a mixture of two separate acids, which between them etch the surface and as a result cause it to be become smooth. In order to characterise the resultant polishing the rate of surface etching must be known, but when this involves multicomponent surface reactions it becomes unclear what this rate actually is. Methods We develop a differential equation based discrete model to determine the effective etching rate by means of an atomic scale model of the etching process. Results We calculate the etching rate numerically and provide an approximate asymptotic estimate. Conclusions The natural extension of this work would be to develop a continuum advection-diffusion model.

Từ khóa


Tài liệu tham khảo

Spierings GACM: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. J. Mater. Sci. 1993, 28: 6261–6273. 10.1007/BF01352182

Judge JS: A study of the dissolution of SiO2 in acidic fluoride solutions. J. Electrochem. Soc. 1971, 118: 1772–1775. 10.1149/1.2407835

Spierings GACM, Van Dijk J: The dissolution of Na2O–MgO–CaO–SiO2 glass in aqueous HF solutions. J. Mater. Sci. 1987, 22: 1869–1874. 10.1007/BF01132419

Harrison JD, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A: Micromachining a miniturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993, 261: 895–897. 10.1126/science.261.5123.895

Stevens GWW: Microphotography. Chapman and Hall, London; 1968.

Macleod Ross W: Modern Circuit Technology. Portcullis Press, London; 1975.

Coombs JD: Printed Circuit Handbook. McGraw-Hill, New York; 1979.

Fowler AC, Ward J, O’Brien SBG: A simple model for multi-component etching. J. Colloid Interface Sci. 2011, 354: 421–423. 10.1016/j.jcis.2010.10.056

Tenney AS, Ghezzo M: Etch rates of doped oxides in solutions of buffered HF. J. Electrochem. Soc. 1973, 120: 1091–1095. 10.1149/1.2403636

Spierings GACM: Compositional effects in the dissolution of multicomponent silicate glasses in aqueous HF solutions. J. Mater. Sci. 1991, 26: 3329–3336. 10.1007/BF01124681

Tavassoly M, Dashtdar M: Height distribution on a rough plane and specularly diffracted light amplitude are Fourier transform pair. Opt. Commun. 2008, 281: 2397–2405. 10.1016/j.optcom.2007.12.085

Barabási AL, Stanley H: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge; 1995.

Slikkerveer PJ, ten Thije Boonkamp JHM: Mathematical modelling of erosion by powder blasting. Surv. Math. Ind. 2002, 10: 89–105.

Tersoff J, Tu Y, Grinstein G: Effect of curvature and stress on reaction rates at solid interfaces. Appl. Phys. Lett. 1998,73(16):2328–2330. 10.1063/1.121812

Kim KS, Hurtado JA, Tan H: Evolution of a surface-roughness spectrum caused by stress in nanometer-scale chemical etching. Phys. Rev. Lett. 1999, 83: 3872–3875. 10.1103/PhysRevLett.83.3872

Yu HH, Suo Z: Stress-dependent surface reactions and implications for a stress measurement technique. J. Appl. Phys. 2000, 87: 1211–1218. 10.1063/1.371999

Kuiken HK: Etching: a two-dimensional mathematical approach. Proc. R. Soc. Lond. Ser. A 1984, 392: 199–225. 10.1098/rspa.1984.0029

Kuiken HK: Etching through a slit. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 1984, 396: 95–117. 10.1098/rspa.1984.0110

Notten PH, Kelly LH, Kuiken HK: Etching profiles at resist edges. J. Electrochem. Soc. 1986,133(6):1226–1232. 10.1149/1.2108823