Xử lý thủy nhiệt bằng axit của bùn thải: tác động của nhiệt độ phản ứng và nồng độ axit đến sản xuất các sản phẩm phụ của phản ứng phân hủy

Biomass Conversion and Biorefinery - Tập 13 - Trang 7533-7546 - 2021
Van Toi Pham1,2, Chung-Yu Guan3, Po-Chun Han4, Babasaheb M. Matsagar5, Kevin C. W. Wu4,5, Tansir Ahamad6, Ching-Yuan Chang1, Chang-Ping Yu1,7
1Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
2Faculty of Environmental Engineering, National University of Civil Engineering, Hanoi, Vietnam
3Department of Environmental Engineering, National Ilan University, Yilan, Taiwan
4Ph.D. Program of Green Materials and Precision Devices, National Taiwan University, Taipei, Taiwan
5Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
6Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
7Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, Taiwan

Tóm tắt

Bùn thải (SS) là một loại sinh khối hữu cơ thu được từ các nhà máy xử lý nước thải, nhưng việc sử dụng bùn thải để sản xuất các hóa chất sinh học dưới các quá trình thủy phân xúc tác axit (ACH) chưa được nghiên cứu đầy đủ. Trong nghiên cứu này, các quá trình ACH được tiến hành ở nhiệt độ 120, 150 và 180 °C sử dụng axit sulfuric (H2SO4) với nồng độ từ 0–0.5 M trong khoảng thời gian phản ứng 90–180 phút để sản xuất các hóa chất sinh học từ bùn thải. Kết quả cho thấy nhiệt độ phản ứng, thời gian phản ứng và nồng độ H2SO4 ảnh hưởng đến năng suất của đường, axit levulinic (LA), và 5-hydroxymethylfurfural (HMF). Năng suất xylose và glucose cao nhất đạt 7.69 mol% và 5.22 mol% ở 120 °C với 0.5 M H2SO4 trong suốt 180 phút phản ứng. Ngoài ra, dưới quá trình ACH ở 180 °C và 180 phút, năng suất của LA đạt giá trị cực đại 0.48 mol% tại 0.5 M H2SO4, và năng suất cao nhất của HMF là 1.66 mol% tại 0.1 M H2SO4. Dữ liệu thu được cũng cho thấy quá trình ACH làm tăng nhu cầu oxy hóa học hòa tan, carbon hữu cơ hòa tan, và tổng nitrogen hòa tan. Ma trận phát xạ-nhận diện huỳnh quang của chất hữu cơ hòa tan và phân tích nhiệt trọng lượng của bùn thải được xử lý càng củng cố thêm việc tăng cường khả năng hòa tan của bùn thải sau quá trình ACH, đặc biệt dưới nhiệt độ phản ứng cao hơn và nồng độ H2SO4 cao. Mặc dù năng suất hóa chất sinh học thấp hơn có thể hạn chế sự thu hồi các sản phẩm mục tiêu ở giai đoạn sau, nhưng việc cải thiện đáng kể khả năng hòa tan bùn thải bởi ACH cho thấy rằng quá trình thủy phân xúc tác axit có tiềm năng như một phương pháp tiền xử lý thay thế cho bùn thải.

Từ khóa

#bùn thải #phương pháp thủy phân xúc tác axit #hóa chất sinh học #axit sulfuric #năng suất đường #axit levulinic #5-hydroxymethylfurfural

Tài liệu tham khảo

Bora AP, Gupta DP, Durbha KS (2020) Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel 259:116262. https://doi.org/10.1016/j.fuel.2019.116262 Gong W, Zhou Z, Liu Y, Wang Q, Guo L (2020) Catalytic gasification of sewage sludge in supercritical water: influence of K2CO3 and H2O2 on hydrogen production and phosphorus yield. ACS Omega 5(7):3389–3396. https://doi.org/10.1021/acsomega.9b03608 Wang C, Wu C, Hornung U, Zhu W, Dahmen N (2021) Suppression of tar and char formation in supercritical water gasification of sewage sludge by additive addition. Chemosphere 262:128412. https://doi.org/10.1016/j.chemosphere.2020.128412 Chen YC, Kuo J (2016) Potential of greenhouse gas emissions from sewage sludge management: a case study of Taiwan. J Cleaner Prod 129:196–201. https://doi.org/10.1016/j.jclepro.2016.04.084 Oladejo J, Shi K, Luo X, Yang G, Wu T (2019) A review of sludge-to-energy recovery methods. Energies 12(1):60. https://doi.org/10.3390/en12010060 Pham VT, Wu PH, Guan CY, Chang CC, Liu BL, Chang CY, Yu CP (2020) Biogas production and microbial communities in the anaerobic digestion of sewage sludge under hydrothermal pretreatment with air and a catalyst. Bioenergy Res. https://doi.org/10.1007/s12155-020-10199-4 Yang T, Liu X, Li R, Li B, Kai X (2019) Hydrothermal liquefaction of sewage sludge to produce bio-oil: effect of co-pretreatment with subcritical water and mixed surfactants. J. Supercrit. Fluids 144:28–38. https://doi.org/10.1016/j.supflu.2018.10.005 di Bitonto L, Locaputo V, D'Ambrosio V, Pastore C (2020) Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels. Appl Energy 259:114163. https://doi.org/10.1016/j.apenergy.2019.114163 He C, Chen CL, Giannis A, Yang Y, Wang JY (2014) Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review. Renewable Sustainable Energy Rev 39:1127–1142. https://doi.org/10.1016/j.rser.2014.07.141 Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renewable Sustainable Energy Rev 94:340–362. https://doi.org/10.1016/j.rser.2018.06.016 Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Banu JR, Rao CV, Kim YG, Yang YH (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724 Zhen G, Lu X, Kato H, Zhao Y, Li YY (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renewable Sustainable Energy Rev 69:559–577. https://doi.org/10.1016/j.rser.2016.11.187 Li C, Wang X, Zhang G, Yu G, Lin J, Wang Y (2017) Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res 117:49–57. https://doi.org/10.1016/j.watres.2017.03.047 Kim D, Lee K, Park KY (2015) Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int Biodeterior Biodegrad. 101:42–46. https://doi.org/10.1016/j.ibiod.2015.03.025 Devlin DC, Esteves SRR, Dinsdale RM, Guwy AJ (2011) The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour Technol 102(5):4076–4082. https://doi.org/10.1016/j.biortech.2010.12.043 Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel 111:201–210. https://doi.org/10.1016/j.fuel.2013.04.052 Xu ZX, Song H, Li PJ, He ZX, Wang Q, Wang K, Duan PG (2020) Hydrothermal carbonization of sewage sludge: effect of aqueous phase recycling. Chem. Eng. J. 387:123410. https://doi.org/10.1016/j.cej.2019.123410 Malhotra M, Garg A (2020) Hydrothermal carbonization of centrifuged sewage sludge: determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Manage 117:114–123. https://doi.org/10.1016/j.wasman.2020.07.026 Qian L, Wang S, Savage PE (2017) Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions. Bioresour Technol 232:27–34. https://doi.org/10.1016/j.biortech.2017.02.017 Xu D, Lin G, Liu L, Wang Y, Jing Z, Wang S (2018) Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures. Energy 159:686–695. https://doi.org/10.1016/j.energy.2018.06.191 Chang CC, Chen CP, Yang CS, Chen YH, Huang M, Chang CY, Shie JL, Yuan MH, Chen YH, Ho C, Li K, Yang MT (2016) Conversion of waste bamboo chopsticks to bio-oil via catalytic hydrothermal liquefaction using K2CO3. Sustainable Environ Res 26(6):262–267. https://doi.org/10.1016/j.serj.2016.08.002 Hantoko D, Antoni KE, Yan M, Weng Z, Gao Z, Zhong Z (2019) Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production. Process Saf Environ Prot 131:63–72. https://doi.org/10.1016/j.psep.2019.08.035 Wang C, Zhu W, Zhang H, Chen C, Fan XSY (2019) Char and tar formation during hydrothermal gasification of dewatered sewage sludge in subcritical and supercritical water: influence of reaction parameters and lumped reaction kinetics. Waste Manage 100:57–65. https://doi.org/10.1016/j.wasman.2019.09.011 Chen SS, Yu IKM, Tsang DCW, Yip ACK, Khan E, Wang L, Ok YS, Poon CS (2017) Valorization of cellulosic food waste into levulinic acid catalyzed by heterogeneous Brønsted acids: temperature and solvent effects. Chem Eng J 327:328–335. https://doi.org/10.1016/j.cej.2017.06.108 Sweygers N, Alewaters N, Dewil R, Appels L (2018) Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural. Sci Rep 8(1):7719. https://doi.org/10.1038/s41598-018-26107-y Kwon OM, Kim DH, Kim SK, Jeong GT (2016) Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis. Algal Res 13:293–297. https://doi.org/10.1016/j.algal.2015.12.011 Cao L, Yu IKM, Cho DW, Wang D, Tsang DCW, Zhang S, Ding S, Wang L, Ok YS (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258. https://doi.org/10.1016/j.biortech.2018.11.013 Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272. https://doi.org/10.3390/molecules15085258 Cheng F, Brewer CE (2017) Producing jet fuel from biomass lignin: potential pathways to alkyl-benzenes and cycloalkanes. Renewable Sustainable Energy Rev 72:673–722. https://doi.org/10.1016/j.rser.2017.01.030 Liu G, Bao J (2017) Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production. Bioresour Technol 243:1232–1236. https://doi.org/10.1016/j.biortech.2017.07.022 Kong QS, Li XL, Xu HJ, Fu Y (2020) Conversion of 5-hydroxymethylfurfural to chemicals: a review of catalytic routes and product applications. Fuel Process Technol 209:106528. https://doi.org/10.1016/j.fuproc.2020.106528 Song Y, Lee YG, Cho EJ, Bae HJ (2020) Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel 278:118247. https://doi.org/10.1016/j.fuel.2020.118247 Araújo MFRS, Lima PC, Cardoso CC, Pasa VMD (2020) Biocrude production from sugarcane bagasse and ethanol over green catalysts based on shellfish waste. J Cleaner Prod 277:123709. https://doi.org/10.1016/j.jclepro.2020.123709 Wang X (2008) Feasibility of glucose recovery from municipal sewage sludges as feedstocks using acid hydrolysis. Master Thesis. Ontario (Canada): Queen's University Kingston. Association APH (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC He XS, Xi BD, Wei ZM, Jiang YH, Geng CM, Yang Y, Yuan Y, Liu HL (2011) Physicochemical and spectroscopic characteristics of dissolved organic matter extracted from municipal solid waste (MSW) and their influence on the landfill biological stability. Bioresour Technol 102(3):2322–2327. https://doi.org/10.1016/j.biortech.2010.10.085 Guan CY, Chen SS, Lee TH, Yu CP, Tsang DCW (2020) Valorization of biomass from plant microbial fuel cells into levulinic acid by using liquid/solid acids and green solvents. J Cleaner Prod 260:121097. https://doi.org/10.1016/j.jclepro.2020.121097 Yu IKM, Tsang DCK, Yip ACK, Chen SS, Wang L, Poon CS (2017) Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): controlling relative kinetics for high productivity. Bioresour Technol 237:222–230. https://doi.org/10.1016/j.biortech.2017.01.017 Yemiş O, Mazza G (2012) Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour Technol 109:215–223. https://doi.org/10.1016/j.biortech.2012.01.031 Liavoga AB, Bian Y, Seib PA (2007) Release of D-xylose from wheat straw by acid and xylanase hydrolysis and purification of xylitol. J Agric Food Chem 55(19):7758–7766. https://doi.org/10.1021/jf070862k Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17(3):171–176. https://doi.org/10.1016/S0926-6690(02)00095-X Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Feng C, Dong Y (2013) Dilute-acid conversion of cotton straw to sugars and levulinic acid via 2-stage hydrolysis. Ind Crops Prod 46:205–209. https://doi.org/10.1016/j.indcrop.2013.01.031 Sanchez G, Pilcher L, Roslander C, Modig T, Galbe M, Liden G (2004) Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresour Technol 93(3):249–256. https://doi.org/10.1016/j.biortech.2003.11.003 Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140:14–19. https://doi.org/10.1016/j.apenergy.2014.11.045 Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2014) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 155:289–299. https://doi.org/10.1016/j.biortech.2013.12.066 Sahinkaya S (2015) Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Saf Environ Prot 93:201–205. https://doi.org/10.1016/j.psep.2014.04.002 Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710. https://doi.org/10.1021/es034354c Ahmad SR, Reynolds DM (1999) Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Res 33(9):2069–2074. https://doi.org/10.1016/S0043-1354(98)00435-7 Determann S, Reuter R, Wagner P, Willkomm R (1994) Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution. Deep Sea Res Part I 41(4):659–675. https://doi.org/10.1016/0967-0637(94)90048-5 Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51(4):325–346. https://doi.org/10.1016/0304-4203(95)00062-3 Ismaili MM, Belin C, Lamotte M, Texier HH (1998) Distribution et caractérisation par fluorescence de la matiére organique dissoute dans les eaux de la Manche centrale. Oceanolog Acta 21(5):645–654. https://doi.org/10.1016/S0399-1784(99)80023-1 Soria-Verdugo A, Garcia-Hernando N, Garcia-Gutierrez LM, Ruiz-Rivas U (2013) Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model. Energy Convers Manage 65:239–244. https://doi.org/10.1016/j.enconman.2012.08.017 Rego F, Dias APS, Casquilho M, Rosa FC, Rodrigues A (2019) Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy 122:375–380. https://doi.org/10.1016/j.biombioe.2019.01.037 Hajaligol M, Waymack B, Kellogg D (2001) Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials. Fuel 80(12):1799–1807. https://doi.org/10.1016/S0016-2361(01)00063-1 Blasi CD (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34(1):47–90. https://doi.org/10.1016/j.pecs.2006.12.001 Scott SA, Dennis JS, Davidson JF, Hayhurst AN (2006) Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel 85(9):1248–1253. https://doi.org/10.1016/j.fuel.2005.11.003 Honda SI, Miyata N, Iwahori K (2002) Recovery of biomass cellulose from waste sewage sludge. J Mater Cycles Waste Manage 4(1):46–50. https://doi.org/10.1007/s10163-001-0054-y Lin CY, Cheng CH (2006) Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):832–840. https://doi.org/10.1016/j.ijhydene.2005.08.010 Manyuchi MM, Chiutsi P, Mbohwa C, Muzenda E, Mutusva T (2018) Bio ethanol from sewage sludge: a bio fuel alternative. S Afr J Chem Eng 25:123–127. https://doi.org/10.1016/j.sajce.2018.04.003