Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds

Materials Today Physics - Tập 22 - Trang 100571 - 2022
Safdar Imam1,2, Khasim Saheb Bayikadi2, Mohammad Ubaid3, V.K. Ranganayakulu2, Sumangala Devi2, Bhalchandra S. Pujari4, Yang-Yuan Chen2, Li-Chyong Chen5, Kuei-Hsien Chen6, Feng-Li Lin1, Raman Sankar2
1Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3Department of Physics, Jamia Millia Islamia, New Delhi, 110025, India
4Department of Scientific Computing, Modeling & Simulation, Savitribai Phule Pune University, Pune, India
5Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
6Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan

Tài liệu tham khảo

Nandihalli, 2020, Nanomater. Energy, 105186, 10.1016/j.nanoen.2020.105186 Mori, 2018, MRS Bull., 43, 176, 10.1557/mrs.2018.32 DiSalvo, 1999, Science, 285, 703, 10.1126/science.285.5428.703 Lin, 2021, Nat. Commun., 12, 1, 10.1038/s41467-020-20314-w Biswas, 2012, Nature, 489, 414, 10.1038/nature11439 Petsagkourakis, 2018, Sci. Technol. Adv. Mater., 19, 836, 10.1080/14686996.2018.1530938 Zebarjadi, 2012, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C Zhao, 2016, Science, 351, 141, 10.1126/science.aad3749 Liu, 2012, Nanomater. Energy, 1, 42, 10.1016/j.nanoen.2011.10.001 Snyder, 2008, Nat. Mater., 7, 10.1038/nmat2090 Zhu, 2017, Adv. Mater., 29, 1605884, 10.1002/adma.201605884 Yu, 2012, Nano Lett., 12, 2077, 10.1021/nl3003045 Zebarjadi, 2011, Nano Lett., 11, 2225, 10.1021/nl201206d Banik, 2014, J. Mater. Chem., 2, 9620, 10.1039/c4ta01333f Pei, 2011, Nature, 473, 66, 10.1038/nature09996 Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601 Zhao, 2013, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G Ahmed, 2017, J. Mater. Chem., 5, 7545, 10.1039/C6TA11120C Ang, 2015, Angew. Chem., 127, 13101, 10.1002/ange.201505517 Hicks, 1993, Phys. Rev. B, 47, 12727, 10.1103/PhysRevB.47.12727 Liu, 2018, Proc. Natl. Acad. Sci. Unit. States Am., 115, 5332, 10.1073/pnas.1802020115 Qiu, 2019, J. Mater. Chem., 7, 26393, 10.1039/C9TA10963C Nunna, 2017, Energy Environ. Sci., 10, 1928, 10.1039/C7EE01737E Liu, 2016, Advanced Energy Materials, 6, 1502423, 10.1002/aenm.201502423 Meng, 2017, Advanced Energy Materials, 7, 1602582, 10.1002/aenm.201602582 Lo, 2012, Adv. Funct. Mater., 22, 5175, 10.1002/adfm.201201221 Yang, 2004, Appl. Phys. Lett., 85, 1140, 10.1063/1.1783022 Zhao, 2014, Nature, 508, 373, 10.1038/nature13184 Jana, 2016, Angew. Chem., 128, 7923, 10.1002/ange.201511737 Morelli, 2008, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.035901 Li, 2015, Nat. Phys., 11, 1063, 10.1038/nphys3492 Qin, 2017, J. Mater. Res., 32, 3029, 10.1557/jmr.2017.288 Zhu, 2013, Nanomater. Energy, 2, 1172, 10.1016/j.nanoen.2013.04.010 Gandhi, 2018, CrystEngComm, 20, 6449, 10.1039/C8CE01134F Zhang, 2020, Joule, 4, 986, 10.1016/j.joule.2020.03.004 Perumal, 2016, J. Mater. Chem. C, 4, 7520, 10.1039/C6TC02501C Li, 2018, Joule, 2, 976, 10.1016/j.joule.2018.02.016 Li, 2017, NPG Asia Mater., 9, e353, 10.1038/am.2017.8 Bayikadi, 2019, J. Mater. Chem., 7, 15181, 10.1039/C9TA03503F Hong, 2018, Adv. Mater., 30, 1705942, 10.1002/adma.201705942 Perumal, 2016, Inorganic Chemistry Frontiers, 3, 125, 10.1039/C5QI00230C Perumal, 2015, Chem. Mater., 27, 7171, 10.1021/acs.chemmater.5b03434 Bayikadi, 2020, J. Mater. Chem., 8, 5332, 10.1039/D0TA00628A Gelbstein, 2014, Phys. Chem. Chem. Phys., 16, 20120, 10.1039/C4CP02399D Wu, 2017, NPG Asia Mater., 9, e343, 10.1038/am.2016.203 Srinivasan, 2018, Materials, 11, 2237, 10.3390/ma11112237 Shuai, 2020, Small, 16, 1906921, 10.1002/smll.201906921 Srinivasan, 2018, J. Phys. Chem. C, 122, 227, 10.1021/acs.jpcc.7b10839 Zheng, 2018, J. Am. Chem. Soc., 140, 2673, 10.1021/jacs.7b13611 Li, 2017, Chem. Mater., 29, 605, 10.1021/acs.chemmater.6b04066 Shuai, 2019, Materials Today Physics, 9, 100094, 10.1016/j.mtphys.2019.100094 Perumal, 2019, Joule, 3, 2565, 10.1016/j.joule.2019.08.017 Perumal, 2017, Chem. Mater., 29, 10426, 10.1021/acs.chemmater.7b04023 Hong, 2018, Advanced Energy Materials, 8, 1801837, 10.1002/aenm.201801837 Srinivasan, 2019, Inorganic Chemistry Frontiers, 6, 63, 10.1039/C8QI00703A Li, 2018, J. Am. Chem. Soc., 140, 16190, 10.1021/jacs.8b09147 Hong, 2018, J. Am. Chem. Soc., 141, 1742, 10.1021/jacs.8b12624 Srinivasan, 2020, J. Mater. Chem., 8, 19805, 10.1039/D0TA06710E Gao, 2021, Appl. Phys. Lett., 118, 10.1063/5.0038957 Sun, 2021, Advanced Energy Materials, 11, 2100544, 10.1002/aenm.202100544 Sist, 2018, Phys. Rev. B, 97, 10.1103/PhysRevB.97.094116 Liu, 2020, Advanced Energy Materials, 10, 2000367, 10.1002/aenm.202000367 Zhu, 2019, ACS Appl. Mater. Interfaces, 11, 41472, 10.1021/acsami.9b10019 Khasimsaheb, 2017, Curr. Appl. Phys., 17, 306, 10.1016/j.cap.2016.05.026 Guo, 2013, J. Phys. Chem. C, 117, 21597, 10.1021/jp4080465 Al Rahal Al Orabi, 2016, Chem. Mater., 28, 376, 10.1021/acs.chemmater.5b04365 Ming, 2020, ACS Appl. Mater. Interfaces, 12, 19693, 10.1021/acsami.0c04298 Xing, 2018, J. Appl. Phys., 123, 195105, 10.1063/1.5025070 Agne, 2018, Energy Environ. Sci., 11, 609, 10.1039/C7EE03256K Xing, 2021, Adv. Mater., 33, 2008773, 10.1002/adma.202008773 Yue, 2019, ACS Appl. Energy Mater., 2, 2596, 10.1021/acsaem.8b02213 Giannozzi, 2009, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502 Vanderbilt, 1990, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892 Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Monkhorst, 1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188