Achieving synergistic performance through highly compacted microcrystalline rods induced in Mo doped GeTe based compounds
Tài liệu tham khảo
Nandihalli, 2020, Nanomater. Energy, 105186, 10.1016/j.nanoen.2020.105186
Mori, 2018, MRS Bull., 43, 176, 10.1557/mrs.2018.32
DiSalvo, 1999, Science, 285, 703, 10.1126/science.285.5428.703
Lin, 2021, Nat. Commun., 12, 1, 10.1038/s41467-020-20314-w
Biswas, 2012, Nature, 489, 414, 10.1038/nature11439
Petsagkourakis, 2018, Sci. Technol. Adv. Mater., 19, 836, 10.1080/14686996.2018.1530938
Zebarjadi, 2012, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C
Zhao, 2016, Science, 351, 141, 10.1126/science.aad3749
Liu, 2012, Nanomater. Energy, 1, 42, 10.1016/j.nanoen.2011.10.001
Snyder, 2008, Nat. Mater., 7, 10.1038/nmat2090
Zhu, 2017, Adv. Mater., 29, 1605884, 10.1002/adma.201605884
Yu, 2012, Nano Lett., 12, 2077, 10.1021/nl3003045
Zebarjadi, 2011, Nano Lett., 11, 2225, 10.1021/nl201206d
Banik, 2014, J. Mater. Chem., 2, 9620, 10.1039/c4ta01333f
Pei, 2011, Nature, 473, 66, 10.1038/nature09996
Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601
Zhao, 2013, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b
Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G
Ahmed, 2017, J. Mater. Chem., 5, 7545, 10.1039/C6TA11120C
Ang, 2015, Angew. Chem., 127, 13101, 10.1002/ange.201505517
Hicks, 1993, Phys. Rev. B, 47, 12727, 10.1103/PhysRevB.47.12727
Liu, 2018, Proc. Natl. Acad. Sci. Unit. States Am., 115, 5332, 10.1073/pnas.1802020115
Qiu, 2019, J. Mater. Chem., 7, 26393, 10.1039/C9TA10963C
Nunna, 2017, Energy Environ. Sci., 10, 1928, 10.1039/C7EE01737E
Liu, 2016, Advanced Energy Materials, 6, 1502423, 10.1002/aenm.201502423
Meng, 2017, Advanced Energy Materials, 7, 1602582, 10.1002/aenm.201602582
Lo, 2012, Adv. Funct. Mater., 22, 5175, 10.1002/adfm.201201221
Yang, 2004, Appl. Phys. Lett., 85, 1140, 10.1063/1.1783022
Zhao, 2014, Nature, 508, 373, 10.1038/nature13184
Jana, 2016, Angew. Chem., 128, 7923, 10.1002/ange.201511737
Morelli, 2008, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.035901
Li, 2015, Nat. Phys., 11, 1063, 10.1038/nphys3492
Qin, 2017, J. Mater. Res., 32, 3029, 10.1557/jmr.2017.288
Zhu, 2013, Nanomater. Energy, 2, 1172, 10.1016/j.nanoen.2013.04.010
Gandhi, 2018, CrystEngComm, 20, 6449, 10.1039/C8CE01134F
Zhang, 2020, Joule, 4, 986, 10.1016/j.joule.2020.03.004
Perumal, 2016, J. Mater. Chem. C, 4, 7520, 10.1039/C6TC02501C
Li, 2018, Joule, 2, 976, 10.1016/j.joule.2018.02.016
Li, 2017, NPG Asia Mater., 9, e353, 10.1038/am.2017.8
Bayikadi, 2019, J. Mater. Chem., 7, 15181, 10.1039/C9TA03503F
Hong, 2018, Adv. Mater., 30, 1705942, 10.1002/adma.201705942
Perumal, 2016, Inorganic Chemistry Frontiers, 3, 125, 10.1039/C5QI00230C
Perumal, 2015, Chem. Mater., 27, 7171, 10.1021/acs.chemmater.5b03434
Bayikadi, 2020, J. Mater. Chem., 8, 5332, 10.1039/D0TA00628A
Gelbstein, 2014, Phys. Chem. Chem. Phys., 16, 20120, 10.1039/C4CP02399D
Wu, 2017, NPG Asia Mater., 9, e343, 10.1038/am.2016.203
Srinivasan, 2018, Materials, 11, 2237, 10.3390/ma11112237
Shuai, 2020, Small, 16, 1906921, 10.1002/smll.201906921
Srinivasan, 2018, J. Phys. Chem. C, 122, 227, 10.1021/acs.jpcc.7b10839
Zheng, 2018, J. Am. Chem. Soc., 140, 2673, 10.1021/jacs.7b13611
Li, 2017, Chem. Mater., 29, 605, 10.1021/acs.chemmater.6b04066
Shuai, 2019, Materials Today Physics, 9, 100094, 10.1016/j.mtphys.2019.100094
Perumal, 2019, Joule, 3, 2565, 10.1016/j.joule.2019.08.017
Perumal, 2017, Chem. Mater., 29, 10426, 10.1021/acs.chemmater.7b04023
Hong, 2018, Advanced Energy Materials, 8, 1801837, 10.1002/aenm.201801837
Srinivasan, 2019, Inorganic Chemistry Frontiers, 6, 63, 10.1039/C8QI00703A
Li, 2018, J. Am. Chem. Soc., 140, 16190, 10.1021/jacs.8b09147
Hong, 2018, J. Am. Chem. Soc., 141, 1742, 10.1021/jacs.8b12624
Srinivasan, 2020, J. Mater. Chem., 8, 19805, 10.1039/D0TA06710E
Gao, 2021, Appl. Phys. Lett., 118, 10.1063/5.0038957
Sun, 2021, Advanced Energy Materials, 11, 2100544, 10.1002/aenm.202100544
Sist, 2018, Phys. Rev. B, 97, 10.1103/PhysRevB.97.094116
Liu, 2020, Advanced Energy Materials, 10, 2000367, 10.1002/aenm.202000367
Zhu, 2019, ACS Appl. Mater. Interfaces, 11, 41472, 10.1021/acsami.9b10019
Khasimsaheb, 2017, Curr. Appl. Phys., 17, 306, 10.1016/j.cap.2016.05.026
Guo, 2013, J. Phys. Chem. C, 117, 21597, 10.1021/jp4080465
Al Rahal Al Orabi, 2016, Chem. Mater., 28, 376, 10.1021/acs.chemmater.5b04365
Ming, 2020, ACS Appl. Mater. Interfaces, 12, 19693, 10.1021/acsami.0c04298
Xing, 2018, J. Appl. Phys., 123, 195105, 10.1063/1.5025070
Agne, 2018, Energy Environ. Sci., 11, 609, 10.1039/C7EE03256K
Xing, 2021, Adv. Mater., 33, 2008773, 10.1002/adma.202008773
Yue, 2019, ACS Appl. Energy Mater., 2, 2596, 10.1021/acsaem.8b02213
Giannozzi, 2009, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502
Vanderbilt, 1990, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892
Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Monkhorst, 1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188