Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials
Tài liệu tham khảo
Muhammad, 2017, Renew Sustain Energy Rev, 78, 15, 10.1016/j.rser.2017.04.098
Cramer, 2018, J Electron Mater, 47, 5122, 10.1007/s11664-018-6402-7
Shi, 2021, Energy Environ Sci, 14, 729, 10.1039/D0EE03520C
Dong, 2021, J. Materiom., 7, 577, 10.1016/j.jmat.2020.11.007
Witting, 2020, J. Materiom., 6, 532, 10.1016/j.jmat.2020.04.001
Hong, 2020, J Am Chem Soc, 142, 2672, 10.1021/jacs.9b13272
Zhang, 2012, J Am Chem Soc, 134, 10031, 10.1021/ja301245b
Shi, 2019, Adv Energy Mater, 9, 1803242.1, 10.1002/aenm.201803242
Xiao, 2020, J Am Chem Soc, 142, 4051, 10.1021/jacs.0c00306
Pei, 2011, Nature, 473, 66, 10.1038/nature09996
Dong, 2021, J Mater Sci Technol, 86, 204, 10.1016/j.jmst.2021.01.040
Chen, 2018, Adv Mater, 30, 10.1002/adma.201705617
Biswas, 2012, Nature, 489, 414, 10.1038/nature11439
Xym, 2022, J Mater Sci Technol, 114, 55, 10.1016/j.jmst.2021.12.002
Snyder, 2008, Nat Mater, 7, 105, 10.1038/nmat2090
Zhang, 2018, Chin Phys B, 27, 47206, 10.1088/1674-1056/27/4/047206
Garcia, 2018, Inorg Chem, 57, 7321, 10.1021/acs.inorgchem.8b00980
Dat, 2015, J Alloys Compd, 625, 346
Chang, 2017, Mater Lett, 186, 227, 10.1016/j.matlet.2016.10.011
Yang, 2011, J Phys Appl Phys, 44
Wei, 2014, J Mater Chem, 2, 13527, 10.1039/C4TA01957A
Li, 2019, Intermetallics, 109, 68, 10.1016/j.intermet.2019.03.009
Zhang, 2016, Mater Des, 98, 150, 10.1016/j.matdes.2016.03.001
A, 2018, Nano Energy, 49, 221, 10.1016/j.nanoen.2018.04.035
Park, 2021, ACS Appl Mater Interfaces, 13, 7208, 10.1021/acsami.0c20592
Li, 2019, Scripta Mater, 172, 88, 10.1016/j.scriptamat.2019.07.016
Yang, 2017, J Am Ceram Soc, 100, 5723, 10.1111/jace.15088
Shi, 2020, Adv Sci, 7, 10.1002/advs.201902923
Qiu, 2004, Inorg Chem Commun, 7, 319, 10.1016/j.inoche.2003.11.015
Xu, 2008, Mater Lett, 62, 763, 10.1016/j.matlet.2007.06.064
Zhu, 2008, Mater Res Bull, 43, 2850, 10.1016/j.materresbull.2008.01.001
Fitzgerel, 1960, J Chem Educ, 37, 545, 10.1021/ed037p545
Laing, 2006, J Chem Educ, 83, 1499, 10.1021/ed083p1499
Kim, 2015, Apl Mater, 3, 41506, 10.1063/1.4908244
E, 1994, Phys Rev B, 50, 17953, 10.1103/PhysRevB.50.17953
John, 1996, Phys Rev Lett, 77, 3865, 10.1103/PhysRevLett.77.3865
Bw, 2020, Nano Energy, 71
Baroni, 2001, Rev Mod Phys, 73, 515, 10.1103/RevModPhys.73.515
Cahill, 1992, Phys Rev B, 46, 6131, 10.1103/PhysRevB.46.6131
Cordero, 2008, Dalton Trans : Int J Integrated Care, 21, 2832, 10.1039/b801115j
Teng, 2017, Nanoscale, 9, 5445, 10.1039/C6NR09454F
Scanlon, 2013, Nat Mater, 12, 798, 10.1038/nmat3697
Reyes-Coronado, 2008, Nanotechnology, 19, 10.1088/0957-4484/19/14/145605
Narducci, 2012, J Solid State Chem, 193, 19, 10.1016/j.jssc.2012.03.032
Heremans, 2008, Science, 321, 554, 10.1126/science.1159725
Zhang, 2019, J Mater Chem, 7, 17648, 10.1039/C9TA05115E
Ren, 2019, ACS Appl Mater Interfaces, 11, 32192, 10.1021/acsami.9b12256
Zaitsev, 2000, Adv Powder Technol, 11, 211, 10.1163/156855200750172321
Kitagawa, 2010, J Alloys Compd, 508, 582, 10.1016/j.jallcom.2010.08.125
Okinaka, 2006, Jpn J Appl Phys, 45, 7009, 10.1143/JJAP.45.7009
Wang, 2021, J Alloys Compd, 878
Wang, 2019, J Alloys Compd, 806, 676, 10.1016/j.jallcom.2019.07.292
Wang, 2020, Mater Today Energy, 19
Wang, 2020, J Phys Chem C, 124, 10336, 10.1021/acs.jpcc.0c01465
Huang, 2022, Adv Mater