Achieving high thermoelectric performance through carrier concentration optimization and energy filtering in Cu3SbSe4-based materials

Journal of Materiomics - Tập 8 - Trang 929-936 - 2022
Sitong Wei1, Boyi Wang2,3, Zipei Zhang1, Wenhao Li1, Lu Yu1, Shikai Wei1, Zhen Ji1, Weiyu Song4, Shuqi Zheng1
1College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4College of Science, China University of Petroleum, Beijing 102249, China

Tài liệu tham khảo

Muhammad, 2017, Renew Sustain Energy Rev, 78, 15, 10.1016/j.rser.2017.04.098 Cramer, 2018, J Electron Mater, 47, 5122, 10.1007/s11664-018-6402-7 Shi, 2021, Energy Environ Sci, 14, 729, 10.1039/D0EE03520C Dong, 2021, J. Materiom., 7, 577, 10.1016/j.jmat.2020.11.007 Witting, 2020, J. Materiom., 6, 532, 10.1016/j.jmat.2020.04.001 Hong, 2020, J Am Chem Soc, 142, 2672, 10.1021/jacs.9b13272 Zhang, 2012, J Am Chem Soc, 134, 10031, 10.1021/ja301245b Shi, 2019, Adv Energy Mater, 9, 1803242.1, 10.1002/aenm.201803242 Xiao, 2020, J Am Chem Soc, 142, 4051, 10.1021/jacs.0c00306 Pei, 2011, Nature, 473, 66, 10.1038/nature09996 Dong, 2021, J Mater Sci Technol, 86, 204, 10.1016/j.jmst.2021.01.040 Chen, 2018, Adv Mater, 30, 10.1002/adma.201705617 Biswas, 2012, Nature, 489, 414, 10.1038/nature11439 Xym, 2022, J Mater Sci Technol, 114, 55, 10.1016/j.jmst.2021.12.002 Snyder, 2008, Nat Mater, 7, 105, 10.1038/nmat2090 Zhang, 2018, Chin Phys B, 27, 47206, 10.1088/1674-1056/27/4/047206 Garcia, 2018, Inorg Chem, 57, 7321, 10.1021/acs.inorgchem.8b00980 Dat, 2015, J Alloys Compd, 625, 346 Chang, 2017, Mater Lett, 186, 227, 10.1016/j.matlet.2016.10.011 Yang, 2011, J Phys Appl Phys, 44 Wei, 2014, J Mater Chem, 2, 13527, 10.1039/C4TA01957A Li, 2019, Intermetallics, 109, 68, 10.1016/j.intermet.2019.03.009 Zhang, 2016, Mater Des, 98, 150, 10.1016/j.matdes.2016.03.001 A, 2018, Nano Energy, 49, 221, 10.1016/j.nanoen.2018.04.035 Park, 2021, ACS Appl Mater Interfaces, 13, 7208, 10.1021/acsami.0c20592 Li, 2019, Scripta Mater, 172, 88, 10.1016/j.scriptamat.2019.07.016 Yang, 2017, J Am Ceram Soc, 100, 5723, 10.1111/jace.15088 Shi, 2020, Adv Sci, 7, 10.1002/advs.201902923 Qiu, 2004, Inorg Chem Commun, 7, 319, 10.1016/j.inoche.2003.11.015 Xu, 2008, Mater Lett, 62, 763, 10.1016/j.matlet.2007.06.064 Zhu, 2008, Mater Res Bull, 43, 2850, 10.1016/j.materresbull.2008.01.001 Fitzgerel, 1960, J Chem Educ, 37, 545, 10.1021/ed037p545 Laing, 2006, J Chem Educ, 83, 1499, 10.1021/ed083p1499 Kim, 2015, Apl Mater, 3, 41506, 10.1063/1.4908244 E, 1994, Phys Rev B, 50, 17953, 10.1103/PhysRevB.50.17953 John, 1996, Phys Rev Lett, 77, 3865, 10.1103/PhysRevLett.77.3865 Bw, 2020, Nano Energy, 71 Baroni, 2001, Rev Mod Phys, 73, 515, 10.1103/RevModPhys.73.515 Cahill, 1992, Phys Rev B, 46, 6131, 10.1103/PhysRevB.46.6131 Cordero, 2008, Dalton Trans : Int J Integrated Care, 21, 2832, 10.1039/b801115j Teng, 2017, Nanoscale, 9, 5445, 10.1039/C6NR09454F Scanlon, 2013, Nat Mater, 12, 798, 10.1038/nmat3697 Reyes-Coronado, 2008, Nanotechnology, 19, 10.1088/0957-4484/19/14/145605 Narducci, 2012, J Solid State Chem, 193, 19, 10.1016/j.jssc.2012.03.032 Heremans, 2008, Science, 321, 554, 10.1126/science.1159725 Zhang, 2019, J Mater Chem, 7, 17648, 10.1039/C9TA05115E Ren, 2019, ACS Appl Mater Interfaces, 11, 32192, 10.1021/acsami.9b12256 Zaitsev, 2000, Adv Powder Technol, 11, 211, 10.1163/156855200750172321 Kitagawa, 2010, J Alloys Compd, 508, 582, 10.1016/j.jallcom.2010.08.125 Okinaka, 2006, Jpn J Appl Phys, 45, 7009, 10.1143/JJAP.45.7009 Wang, 2021, J Alloys Compd, 878 Wang, 2019, J Alloys Compd, 806, 676, 10.1016/j.jallcom.2019.07.292 Wang, 2020, Mater Today Energy, 19 Wang, 2020, J Phys Chem C, 124, 10336, 10.1021/acs.jpcc.0c01465 Huang, 2022, Adv Mater