Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Những Thành Tựu Của Những Thập Kỷ Gần Đây Trong Chẩn Đoán Và Nghiên Cứu Cơ Chế Bệnh Của Bệnh Đau Nửa Đầu
Tóm tắt
Trong vài thập kỷ qua, những tiến bộ đáng kể đã được thực hiện trong nghiên cứu bệnh đau nửa đầu, điều này đã thay đổi sự hiểu biết của chúng ta về sinh lý thần kinh của bệnh. Hiện nay, bệnh đau nửa đầu được coi là một rối loạn thần kinh mạch máu, đặc trưng bởi những cơn đau tái phát bao gồm các giai đoạn liên tiếp của triệu chứng báo trước, triệu chứng ngoại vi, cơn đau đầu và triệu chứng sau cơn. Việc đánh giá các đặc điểm lâm sàng của bệnh đã cho phép chúng ta phân loại các loại bệnh đau nửa đầu—có triệu chứng ngoại vi, không có triệu chứng ngoại vi, mãn tính và các triệu chứng đi kèm của nó, nhằm chuẩn hóa thuật toán chẩn đoán và đưa ra các tiêu chí phân loại cơn đau đầu. Một vai trò hàng đầu trong việc khởi phát cơn đau được cho là do sự mất cân bằng trong sự tương tác giữa các cấu trúc của hệ thần kinh trung ương và ngoại vi liên quan đến việc truyền đau và viêm, cũng như thành mạch. Nguyên nhân của những rối loạn này được cho là do rối loạn chức năng tế bào thần kinh nguyên phát và các rối loạn xử lý cảm giác liên quan, trầm cảm vỏ não lan tỏa và ngưỡng kích thích giảm của hệ thống trigeminovascular. Sự kích hoạt của hệ thống này dẫn đến sự giải phóng các neuropeptid, phát triển viêm vô khuẩn trong thành mạch, cảm giác đau và các triệu chứng không đau liên quan. Có nhiều bằng chứng hơn nữa cho thấy các đối kháng peptide liên quan đến gen calcitonin (CGRP) được phát triển gần đây có thể dẫn dắt trong việc điều trị và phòng ngừa bệnh đau nửa đầu. Việc hiểu rõ hơn về các phân tử và cơ chế chính liên quan trong các giai đoạn khác nhau của bệnh đau nửa đầu sẽ giúp thiết lập các mục tiêu điều trị mới, đảm bảo những cải thiện chất lượng trong công tác chăm sóc cho căn bệnh phổ biến và gây tàn phế này.
Từ khóa
#bệnh đau nửa đầu #cơ chế bệnh sinh #đối kháng CGRP #triệu chứng #trị liệuTài liệu tham khảo
Lipton, R.B., Bigal, M.E., Diamond, M., et al., Migraine prevalence, disease burden, and the need for preventive therapy, Neurology, 2007, vol. 68, pp. 343–349.
Buse, D.C., Loder, E.W., Gorman, J.A., et al., Sex differences in the prevalence, symptoms, and associated features of migraine, probable migraine and other severe headache: results of the American Migraine Prevalence and Prevention (AMPP) Study, Headache, 2013, vol. 53, no. 8, pp. 1278–1299.
Steiner, T.J., Stovner, L.J., and Vos, T., GBD 2015: migraine is the third cause of disability in under 50s, J. Headache Pain, 2016, vol. 17, no. 1, p. 104.
Vos, T., Abajobir, A.A., Abate, K.H., et al., Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet, 2017, vol. 390, no. 10100, pp. 1211–1259.
Azimova, Yu.E., Migraine: a modern look at classification, pathophysiology and specific therapy, Med. Sov., 2014, no. 5, pp. 27–29.
Ayzenberg, I., Katsarava, Z., Sborowski, A., et al., The prevalence of primary headache disorders in Russia: a countrywide survey, Cephalalgia, 2012, vol. 32, no. 5, pp. 373–381.
Steiner, T.J., Stovner, L.J., Katsarava, Z., et al., The impact of headache in Europe: principal results of the Eurolight project, J. Headache Pain, 2014, vol. 15, no. 1, p. 31.
Agosti, R., Migraine burden of disease: from the patient’s experience to a socio-economic view, Headache, 2018, vol. 58, pp. 17–32.
Glembotskaya, G.T. and Kozub, O.V., Pharmacoeconomic assessment of the migraine burden in the RF, Klin. Pharmakol. Ter., 2013, vol. 22, no. 2, pp. 83–86.
Bigal, M.E., Serrano, D., Buse, D., et al., Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study, Headache, 2008, vol. 48, no. 8, pp. 1157–1168.
Natoli, J.L., Manack, A., Dean, B., et al., Global prevalence of chronic migraine: a systematic review, Cephalalgia, 2009, vol. 30, no. 5, pp. 599–609.
Arnold, M., Headache classification committee of the international headache society (ihs) the international classification of headache disorders, Cephalalgia, 2018, vol. 38, no. 1, pp. 1–211.
Tabeeva, G.R. and Golubeva, V.V., Prevention and treatment of migraines, Med. Sov., 2012, no. 4, pp. 43–46.
Lipton, R.B., Dodick, D., Sadovsky, R., et al., A self-administered screener for migraine in primary care: the ID Migraine™ validation study, Neurology, 2003, vol. 61, no. 3, pp. 375–382.
Lipton, R., Stewart, W., Diamond, S., et al., Prevalence and burden of migraine in the United States: data from the American Migraine Study II, Headache, 2001, vol. 41, no. 7, pp. 646–657.
Osipova, V.V., Filatova, E.G., Artemenko, A.R., Lebedeva, E.R., et al., Diagnosis and treatment of migraine: recommendations of Russian experts, Neurosci. Behav. Physiol., 2018, vol. 48, no. 6, pp. 1–15.
Osipova, V.V. and Tabeeva, G.R., Pervichnye golovnye boli. Prakticheskoe rukovodstvo (Primary Headaches: Practice Guidelines), Moscow: Pagri-Grint, 2007, p. 60.
Koreshkina, M.I., Khalikov, A.D., Nazinkina, Yu.V., Osipova, V.V., Amelin, A.V., and Kosmacheva, E.A., Study of cerebral blood flow using high-field perfusion MRI during a migraine without aura, Epilepsiya Paroksizmalniye Sostoyania, 2012, vol. 4, no. 4, pp. 12–17.
Sergeev, A.V. and Tabeeva, G.R., Migraine attack: new possibilities of pathogenetic therapy, Nervniye Bolezni, 2014, vol. 3, pp. 17–22.
May, A. and Burstein, R., Hypothalamic regulation of headache and migraine, Cephalalgia, 2019, vol. 39, no. 13, pp. 1710–1719.
Schulte, L.H., Jurgens, T.P., and May, A., Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? J. Headache Pain, 2015, vol. 16, no. 1, p. 14.
Charbit, A.R., Akerman, S. and Goadsby, P.J., Dopamine: What’s new in migraine? Curr. Opin. Neurol., 2010, vol. 23, no. 3, pp. 275–281.
Guven, B., Guven, H. and Comoglu, S.S., Migraine and yawning, Headache, 2018, vol. 58, no. 2, pp. 210–216.
May, A., Pearls and pitfalls: neuroimaging in headache, Cephalalgia, 2013, vol. 33, no. 8, pp. 554–565.
Mayanagi, Y., Hori, T., and Sano, K., The posteromedial hypothalamus and pain, behavior, with special reference to endocrinological findings, Stereotact. Funct. Neurosurg., 1978, vol. 41, nos. 1–4, pp. 223–231.
Buller, K.M., Neuroimmune stress responses: reciprocal connections between the hypothalamus and the brainstem, Stress, 2003, vol. 6, no. 1, pp. 11–17.
Bartsch, T., Levy, M.J., Knight, Y.E., and Goadsby, P.J., Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus, Pain, 2005, vol. 117, nos. 1–2, pp. 30–39.
Holland, P. and Goadsby, P.J., The hypothalamic orexinergic system: pain and primary headaches, Headache, 2007, vol. 47, no. 6, pp. 951–962.
Tso, A.R. and Goadsby, P.J., New targets for migraine therapy, Curr. Treat. Opin. Neurol., 2014, vol. 16, no. 11, p. 318.
Hoffmann, J., Supronsinchai, W., Akerman, S., Andreou, A.P., et al., Evidence for orexinergic mechanisms in migraine, Neurobiol. Dis., 2015, vol. 74, pp. 137–143.
Bartsch, T., Levy, M.J., Knight, Y.E., and Goadsby, P.J., Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area, Pain, 2004, vol. 109, no. 3, pp. 367–378.
Kagan, R., Kainz, V., Burstein, R., and Noseda, R., Hypothalamic and basal ganglia projections to the posterior thalamus: possible role in modulation of migraine headache and photophobia, Neuroscience, 2013, vol. 248, pp. 359–368.
Friedman, B.W., Garber, L., Yoon, A., Solorzano, C., et al., Randomized trial of IV valproate vs metoclopramide vs ketorolac for acute migraine, Neurology, 2014, vol. 82, no. 11, pp. 976–983.
Gaffigan, M.E., Bruner, D.I., Wason, C., Pritchard, A., et al., A randomized controlled trial of intravenous haloperidol vs. intravenous metoclopramide for acute migraine therapy in the emergency department, J. Emerg. Med., 2015, vol. 49, no. 3, pp. 326–334.
Talabi, S., Masoumi, B., Azizkhani, R., and Esmailian, M., Metoclopramide versus sumatriptan for treatment of migraine headache: a randomized clinical trial, J. Res. Med. Sci., 2013, vol. 18, no. 8, p. 695.
van Oosterhout, W., van Someren, E., Schoon-man, G.G., et al., Chronotypes and circadian timing in migraine, Cephalalgia, 2018, vol. 38, no. 4, pp. 617–625.
Maniyar, F.H., Sprenger, T., Monteith, T., Schankin, C., et al., Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks, Brain, 2014, vol. 137, no. 1, pp. 232–241.
Moulton, E.A., Becerra, L., Johnson, A., Burstein, R., et al., Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine, PLoS One, 2014, vol. 9, no. 4, pp. 1–8.
Burstein, R. and Jakubowski, M., Unitary hypothesis for multiple triggers of the pain and strain of migraine, J. Comp. Neurol., 2005, vol. 493, no. 1, pp. 9–14.
Lai, T.H., Fuh, J.L., and Wang, S.J., Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache, J. Neurol., Neurosurg. Psychiatry, 2009, vol. 80, no. 10, pp. 1116–1119.
Gazerani, P. and Cairns, B.E., Dysautonomia in the pathogenesis of migraine, Expert Rev. Neurother., 2018, vol. 18, no. 2, pp. 153–165.
Pietrobonstein, R., Noseda, R., and Borsook, D., Migraine: multiple processes, complex pathophysiology, J. Neurosci., 2015, vol. 35, no. 17, pp. 6619–6629.
Borsook, D. and Burstein, R., The enigma of the dorsolateral pons as a migraine generator, Cephalalgia, 2012, vol. 32, no. 11, pp. 803–812.
Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., et al., Pathophysiology of migraine: a disorder of sensory processing, Physiol. Rev., 2017, vol. 97, pp. 553–622.
Schulte, L.H. and May, A., The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks, Brain, 2016, vol. 139, no. 7, pp. 1987–1993.
Noseda, R. and Burstein, R., Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain, Pain, 2013, vol. 154, pp. 44–53.
Leao, A.P., Spreading depression of activity in the cerebral cortex, J. Neurophysiol., 1944, vol. 7, no. 6, pp. 359–390.
Pietrobon, D. and Moskowitz, M.A., Pathophysiology of migraine, Annu. Rev. Physiol., 2013, vol. 75, pp. 365–391.
Charles, A., Advances in the basic and clinical science of migraine, Ann. Neurol., 2009, vol. 65, no. 5, pp. 491–498.
Lauritzen, M., Pathophysiology of the migraine aura: the spreading depression theory, Brain, 1994, vol. 117, no. 1, pp. 199–210.
Hadjikhani, N., Sanchez, M., Wu, O., Schwartz, D., et al., Mechanisms of migraine aura revealed by functional MRI in human visual cortex, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 8, pp. 4687–4692.
Smith, J.M., Bradley, D.P., James, M.F., and Huang, C.L., Physiological studies of cortical spreading depression, Biol. Rev., 2006, vol. 81, no. 4, pp. 457–481.
Somjen, G.G., Mechanisms of spreading depression and hypoxic spreading depression-like depolarization, Physiol. Rev., 2001, vol. 81, no. 3, pp. 1065–1096.
Pietrobon, D. and Moskowitz, M., Pathophysiology of migraine, Annu. Rev. Physiol., 2013, vol. 75, pp. 365–391.
Karatas, H., Erdener, S.E., Gursoy-Ozdemir, Y., Lule, S., et al., Spreading depression triggers headache by activating neuronal Panx1 channels, Science, 2013, vol. 339, no. 6123, pp. 1092–1095.
Zhang, X., Levy, D., Noseda, R., Kainz, V., et al., Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura, J. Neurosci., 2010, vol. 30, no. 26, pp. 8807–8814.
Moskowitz, M.A., Reinhard, J.F., Romero, J., Melamed, E., et al., Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet, 1979, vol. 314, no. 8148, pp. 883–885.
Goadsby, P.J., Migraine, allodynia, sensitization and all of that, Eur. Neurol., 2005, vol. 53, suppl. 1, pp. 10–16.
Levy, D., Labastida-Ramirez, A., and MaassenVanDenBrink, A., Current understanding of meningeal and cerebral vascular function underlying migraine headache, Cephalalgia, 2019, vol. 39, no. 13, pp. 1606–1622.
Burstein, R., Yamamura, H., Malick, A., and Strassman, A.M., Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons, J. Neurophysiol., 1998, vol. 79, no. 2, pp. 964–982.
Bartsch, T. and Goadsby, P.J., The trigeminocervical complex and migraine: current concepts and synthesis, Curr. Pain Headache Rep., 2003, vol. 7, no. 5, pp. 371–376.
Gaivoronskii, I.V., Normal’naya anatomiya cheloveka. Uchebnik dlya meditsinskikh vuzov (Normal Human Autonomy: Manual for Higher Medical Education Institutions), St. Petersburg: SpetsLit, 2000, vol. 1, p. 420.
Noseda, R., Monconduit, L., Constandil, L., Chalus, M., et al., Central nervous system networks involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in the rat, Cephalalgia, 2008, vol. 28, no. 8, pp. 813–824.
Panneton, W.M., McCulloch, P.F., and Sun, W., Trigemino-autonomic connections in the muskrat: the neural substrate for the diving response, Brain Res., 2000, vol. 874, no. 1, pp. 48–65.
Malick, A., Strassman, R.M., and Burstein, R., Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat, J. Neurophysiol., 2000, vol. 84, no. 4, pp. 2078–2112.
Burstein, R., Noseda, R., and Borsook, D., Migraine: multiple processes, complex pathophysiology, J. Neurosci., 2015, vol. 35, no. 17, pp. 6619–6629.
Noseda, R., Jakubowski, M., Kainz, V., Borsook, D., and Burstein, R., Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms, J. Neurosci., 2011, vol. 31, no. 40, pp. 14204–14217.
Edvinsson, L., Villalón, C.M., and MaassenVanDenBrink, A., Basic mechanisms of migraine and its acute treatment, Pharmacol. Ther., 2012, vol. 136, no. 3, pp. 319−333.
Messlinger, K. and Russo, A.F., Current understanding of trigeminal ganglion structure and function in headache, Cephalalgia, 2019, vol. 39, no. 13, pp. 1661–1674.
Sokolov, A.Yu. and Ignatov, Yu.D., The main subcortical structures as a drug target for the treatment of primary headache, Obzory Klin. Farmakol. Lekarstvennoi Ter., 2010, vol. 8, no. 2, pp. 13–26.
Charles, A., The pathophysiology of migraine: implications for clinical management, Lancet Neurol., 2018, vol. 17, pp. 174–182.
Moskowitz, M.A., The neurobiology of vascular head pain, Ann. Neurol., 1984, vol. 16, no. 2, pp. 157–168.
Skorobogatykh, K.V. and Tabeeva, G.R., Calcitonin gene-related peptide in the pathogenesis of primary headaches, Ross. Zh. Boli, 2010, no. 1, pp. 45–49.
May, A. and Goadsby, P.J., Substance P receptor antagonists in the therapy of migraine, Expert Opin. Investig. Drugs, 2001, vol. 10, no. 4, pp. 673–678.
Uddman, R., Edvinsson, L., Ekman, R., et al., Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide: trigeminal origin and co-existence with substance P, Neurosci. Lett., 1985, vol. 62, no. 1, pp. 131–136.
Ashina, M., Hansen, J.M., Do, T.P., et al., Migraine and the trigeminovascular system—40 years and counting, Lancet Neurol., 2019, vol. 18, no. 8, pp. 795–804.
Ashina, H., Schytz, H.W., and Ashina, M., CGRP in human models of migraine, in Calcitonin Gene-Related Peptide (CGRP) Mechanisms: Focus on Migraine, New York: Springer-Verlag, 2018, pp. 109–120.
Goadsby, P.J. and Edvinsson, L., The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats, Ann. Neurol., 1993, vol. 33, no. 1, pp. 48–56.
Messlinger, K., Fischer, M.J., and Lennerz, J.K., Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine, Keio J. Med., 2011, vol. 60, no. 3, pp. 82–89.
Zhang, Z., Winborn, C.S., Marquez de Prado, B., and Russo, A.F., Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion, J. Neurosci., 2007, vol. 27, no. 10, pp. 2693–2703.
Samsam, M., Covenas, R., Ahangari, R., Yajeya, J., et al., Simultaneous depletion of neurokinin A, substance P and calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat during electrical stimulation of the trigeminal ganglion, Pain, 2000, vol. 84, nos. 2−3, pp. 389–395.
Vollesen, A.L.H., Amin, F.M., and Ashina, M., Targeted pituitary adenylate cyclase-activating peptide therapies for migraine, Neurotherapeutics, 2018, vol. 15, no. 2, pp. 371–376.
Tuka, B., Helyes, Z., Markovics, A., et al., Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system, Peptides, 2012, vol. 33, no. 2, pp. 307–316.
Zagami, A.S., Edvinsson, L., and Goadsby, P.J., Pituitary adenylate cyclase activating polypeptide and migraine, Ann. Clin. Transl. Neurol., 2014, vol. 1, no. 12, pp. 1036–1040.
Levy, D., Burstein, R., Kainz, V., et al., Mast cell degranulation activates a pain pathway underlying migraine headache, Pain, 2007, vol. 130, nos. 1–2, pp. 166–176.
Davis-Taber, R., Baker, S., Lehto, S.G., et al., Central pituitary adenylate cyclase 1 receptors modulate nociceptive behaviors in both inflammatory and neuropathic pain states, J. Pain, 2008, vol. 9, no. 5, pp. 449–456.
Ohsawa, M., Brailoiu, C.G., Shiraki, M., et al., Modulation of nociceptive transmission by pituitary adenylate cyclase activating polypeptide in the spinal cord of the mouse, Pain, 2002, vol. 100, nos. 1–2, pp. 27–34.
Reshetko, O.V. and Grishin, A.I., Innovative drugs for the treatment of primary headache: migraine, Kach. Klin. Prakt., 2019, no. 2, pp. 95–104.
Sokolov, A.Yu., Lyubashina, O.A., Ignatov, Yu.D., et al., The role of sensitization in the mechanisms of migraine formation, Med. Akad. Zh., 2011, vol. 11, no. 2, pp. 3–14.
Burstein, R., Cutrer, M.F., and Yarnitsky, D., The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine, Brain, 2000, vol. 123, no. 8, pp. 1703–1709.
Olesen, J., Ashina, M., and Tfelt-Hansen, P., Origin of pain in migraine: evidence for peripheral sensitisation, Lancet Neurol., 2009, vol. 8, no. 7, pp. 679–690.
Burstein, R. and Jakubowski, M., Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization, Ann. Neurol., 2004, vol. 55, no. 1, pp. 27–36.
Jakubowski, M., Levy, D., Kainz, V., et al., Sensitization of central trigeminovascular neurons: blockade by intravenous naproxen infusion, Neuroscience, 2007, vol. 148, no. 2, pp. 573–583.
Dodick, D., A phase-by-phase review of migraine pathophysiology, Headache, 2018, vol. 58, pp. 4–16.
Boyer, N., Dallel, R., Artola, A., and Monconduit, L., General trigeminospinal central sensitization and impaired descending pain inhibitory controls contribute to migraine progression, Pain, 2014, vol. 155, no. 7, pp. 1196–1205.
Louter, M.A., Bosker, J.E., van Oosterhout, W.P., et al., Cutaneous allodynia as a predictor of migraine chronification, Brain, 2013, vol. 136, no. 11, pp. 3489–3496.
Bigal, M.E. and Lipton, R.B., Clinical course in migraine: conceptualizing migraine transformation, Neurology, 2008, vol. 71, no. 11, pp. 848–855.
Vila-Pueyo, M., Hoffmann, J., Romero-Reyes, M., and Akerman, S., Brain structure and function related to headache: brainstem structure and function in headache, Cephalalgia, 2019, vol. 39, no. 13, pp. 1635–1660.
Knight, Y.E., Bartsch, T., Kaube, H., and Goads-by, P.J., P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J. Neurosci., 2002, vol. 22, no. 5, pp. RC213–RC219.
Knight, Y.E., Cassey, L., Lasalandra, M., et al., Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat, Brain Res., 2005, vol. 1045, nos. 1–2, pp. 1–11.
Benarroch, E.E., Pain-autonomic interactions, Neurol. Sci., 2006, vol. 27, no. 2, pp. 130–133.