Acetogenic anthraquinones: biosynthetic convergence and chemical evidence of enzymatic cooperation in nature

Springer Science and Business Media LLC - Tập 7 - Trang 499-511 - 2008
Gerhard Bringmann1, Andreas Irmer1
1Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany

Tóm tắt

Phenylanthraquinones belong to the quite rare class of fully unsymmetric biaryls, consisting of two different molecular portions, an anthraquinone part, chrysophanol, and a phenyl part, 2,4-dihydroxy-6-methoxyacetophenone, linked together by phenol-oxidative coupling. The biosynthesis of these two moieties, from eight and four acetate units, respectively, bears some unique features: Chrysophanol is the first example of an acetogenic natural product that is, in an organism-specific manner, formed via more than one folding mode: In eukaryotes, like, e.g., in fungi, in higher plants, and in insects, it is formed via folding mode F, while in prokaryotes it originates through mode S. It has, more recently, even been found to be synthesized by a third pathway, which we have named mode S′. It is thus the first example of biosynthetic convergence in polyketide biosynthesis. The monocyclic “southern” portion of the molecule, which is much simpler (arising from only four acetate units and without decarboxylation), unexpectedly does not show the anticipated randomization of the C2-labeling in the aromatic ring, but has clearly localized C2 units, excluding any symmetric intermediate like, e.g., 2,4,6-trihydroxyacetophenone. This is confirmed by competitive feeding experiments with specifically 13C2-labeled acetophenones, showing the O-methylation to be the decisive symmetry-preventing step, which hints at a close collaboration of the participating enzymes. The results make knipholone an instructive example of structure, function, and evolution of polyketide synthases and O-methyltransferases, and their cooperation.

Tài liệu tham khảo

Abe I, Oguro S, Utsumi Y, Sano Y, Noguchi H (2005) Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J Am Chem Soc 127:12709–12716 Abegaz BM, Bezabih M, Msuta T, Brun R, Menche D, Mühlbacher J, Bringmann G (2002) Gaboroquinones A and B and 4′-O-demethylknipholone-4′-O-β-D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens. J Nat Prod 65:1117–1121 Asahina Y, Fujikawa F (1935) Endocrocin, a new hydroxyanthraquinone derivative. Ber Dtsch Chem Ges 68B:1558–1565 Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110 Berger S (1988) Selective INADEQUATE. A farewell to 2D-NMR? Angew Chem Int Ed 27:1196–1197 Bolkart KH, Zenk MH (1968) Tyrosin, a precursor of the quinone ring of 2,7-dimethyl-naphthoquinone (chimaphilin). Naturwissenschaften 55:444–445 Brakhage AA, Al-Abdallah Q, Tüncher A, Spröte P (2005) Evolution of β-lactam biosynthesis genes and recruitment of trans-acting factors. Phytochemistry 66:1200–1210 Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (ed) The alkaloids, vol 46. Academic Press, New York, pp 127–271 Bringmann G, Busemann S (1998) The quantum chemical calculation of CD spectra: the absolute configuration of chiral compounds from natural or synthetic origin. In: Schreier P, Herderich M, Humpf H-U, Schwab W (eds) Natural product analysis. Vieweg, Wiesbaden, pp 195–211 Bringmann G, Lang G (2003) Full absolute stereostructures of natural products directly from crude extracts: the HPLC-MS/MS-NMR-CD ‘triad’. In: Müller WEG (ed) Sponges (Porifera). Springer, Berlin Heidelberg New York, pp 89–116 Bringmann G, François G, Aké Assi L, Schlauer J (1998a) The alkaloids of Triphyophyllum peltatum (Dioncophyllaceae). Chimia 52:18–28 Bringmann G, Wohlfarth M, Rischer H, Rückert M, Schlauer J (1998b) The polyketide folding mode in the biogenesis of isoshinanolone and plumbagin from Ancistrocladus heyneanus (Ancistrocladaceae). Tetrahedron Lett 39:8445–8448 Bringmann G, Menche D, Bezabih M, Abegaz BM, Kaminsky R (1999) Antiplasmodial activity of knipholone and related natural phenylanthraquinones. Planta Med 65:757–758 Bringmann G, Rischer H, Wohlfarth M, Schlauer J, Aké Assi L (2000a) Droserone from cell cultures of Triphyophyllum peltatum (Dioncophyllaceae) and its biosynthetic origin. Phytochemistry 53:339–343 Bringmann G, Wohlfarth M, Rischer H, Grüne M, Schlauer J (2000b) A new biosynthetic pathway to alkaloids in plants: acetogenic isoquinolines. Angew Chem Int Ed 39:1464–1466 Bringmann G, Günther C, Ochse M, Schupp O, Tasler S (2001) Biaryls in nature: a multi-facetted class of stereochemically, biosynthetically, and pharmacologically intriguing secondary metabolites. In: Herz W, Falk H, Kirby GW, Moore RE, Tamm C (eds) Progr Chem Org Nat Prod, vol 82. Springer, Wien New York, pp 1–249 Bringmann G, Menche D, Brun R, Msuta T, Abegaz B (2002a) Bulbine-knipholone, a new, axially chiral phenylanthraquinone from Bulbine abyssinica (Asphodelaceae): isolation, structural elucidation, synthesis, and antiplasmodial activity. Eur J Org Chem 6:1107–1111 Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun R (2002b) Extract screening by HPLC coupled to MS-MS, NMR, and CD: a dimeric and three monomeric naphthylisoquinoline alkaloids, from Ancistrocladus griffithii. Phytochemistry 61:195–204 Bringmann G, Lang G, Gulder TAM, Tsuruta H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF, Perović-Ottstadt S, Boreiko O, Müller WEG (2005) The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge-derived Penicillium chrysogenum strain. Tetrahedron 61:7252–7256 Bringmann G, Kajahn I, Reichert M, Pedersen SEH, Faber JH, Gulder T, Brun R, Christensen SB, Ponte-Sucre A, Moll H, Heubl G, Mudogo V (2006a) Ancistrocladinium A and B, the first N,C-coupled naphthyldihydroisoquinoline alkaloids from a Congolese Ancistrocladus species. J Org Chem 71:9348–9356 Bringmann G, Noll TF, Gulder TAM, Grüne M, Dreyer M, Wilde C, Pankewitz F, Hilker M, Payne GD, Jones AL, Goodfellow M, Fiedler H-P (2006b) Different polyketide folding modes converge to an identical molecular architecture. Nat Chem Biol 2:429–433 Bringmann G, Haagen Y, Gulder TAM, Gulder T, Heide L (2007a) Biosynthesis of the isoprenoid moieties of furanonaphthoquinone I and endophenazine A in Streptomyces cinnamonensis DSM 1042. J Org Chem 72:4198–4204 Bringmann G, Maksimenka K, Mutanyatta-Comar J, Knauer M, Bruhn T (2007b) The absolute axial configurations of knipholone and knipholone anthrone by TDDFT and DFT/MRCI CD calculations: a revision. Tetrahedron 63:9810–9824 Bringmann G, Mutanyatta-Comar J, Maksimenka K, Wanjohi JM, Heydenreich M, Brun R, Müller WEG, Peter MG, Midiwo JO, Yenesew A (2007c) Joziknipholones A and B: the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chem Eur J (in press) Bringmann G, Noll TF, Gulder T, Dreyer M, Grüne M, Moskau D (2007d) Polyketide folding in higher plants: biosynthesis of the phenylanthraquinone knipholone. J Org Chem 72:3247–3252 Bringmann G, Gulder TAM, Reichert M, Gulder T (2008) The online assignment of the absolute configuration of natural products: HPLC-CD in combination with quantum chemical CD calculations. Chirality (in press) Calestani C, Rast JP, Davidson EH (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130:4587–4596 Castoe TA, Stephens T, Noonan BP, Calestani C (2007) A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene 392:47–58 Chakraborty DP (1991) Carbazol alkaloids. In: Herz W, Kirby GW, Steglich W, Tamm CH (eds) Progr Chem Org Nat Prod, vol 57. Springer, Wien New York, pp 71–152 Cox GB, Gibson F (1964) Biosynthesis of vitamin K and ubiquinone. Relation to the shikimic acid pathway in Escherichia coli. Biochim Biophys Acta 93:204–206 Dagne E, Steglich W (1984) Knipholone: a unique anthraquinone derivative from Kniphofia foliosa. Phytochemistry 23:1729–1731 Dagne E, Yenesew A (1993) Knipholone anthrone from Kniphofia foliosa. Phytochemistry 34:1440–1441 Dewick PM (2002) Medicinal natural products: a biosynthetic approach, 2nd edn. Wiley, New York Durand R, Zenk MH (1971) Biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) via the acetate pathway in higher plants. Tetrahedron Lett 32:3009–3012 Franck B, Stange A (1981) Detection of a bicyclic intermediate of anthraquinone biosynthesis. Liebigs Ann Chem 12:2106–2116 Fotso S, Maskey RP, Grün-Wollny I, Schulz K-P, Munk M, Laatsch H (2003) Bhimamycin A–E and bhimanone: isolation, structure elucidation and biological activity of novel quinone antibiotics from a terrestrial streptomycete. J Antibiot 56:931–941 Hammouda FM, Rizk AM, Seif El-Nasr MM (1974) Anthraquinones of certain Egyptian Asphodelus species. Z Naturforsch C 29:351–354 Harris TM, Webb AD, Harris CM, Wittek PJ, Murray TP (1976) Biogenetic-type syntheses of emodin and chrysophanol. J Am Chem Soc 98:6065–6067 Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (2002) Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul 20:319–331 Herbert RB (1995) The biosynthesis of plant alkaloids and nitrogenous microbial metabolites. Nat Prod Rep 12:445–464 Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190 Hilker M, Schulz S (1991) Anthraquinones in different developmental stages of Galeruca tanaceti (Coleoptera, Chrysomelidae). J Chem Ecol 17:2323–2332 Howard DF, Phillips DW, Jones TH, Blum MS (1982) Anthraquinones and anthrones: occurrence and defensive function in a chrysomelid beetle. Naturwissenschaften 69:91–92 Inouye K, Ueda S, Inoue K, Matsumura H (1979) Biosynthesis of shikonin in callus cultures of Lithospermum erythrorhizon. Phytochemistry 18:1301–1308 Kaneda M, Kitahara T, Yamasaki K, Nakamura S (1990) Biosynthesis of carbazomycin B. II. Origin of the whole carbon skeleton. J Antibiot 43:1623–1626 Kuroda M, Mimaki Y, Sakagami H, Sashida Y (2003) Bulbinelonesides A–E, phenylanthraquinone glycosides from the roots of Bulbinella floribunda. J Nat Prod 66:894–897 Leete E (1971) Biosynthesis of the hemlock and related piperidine alkaloids. Acc Chem Res 4:100–107 Mishchenko NP, Stepanenko LS, Krivoshchekova OE, Maksimov OB, (1980) Anthraquinones of the lichen Asahinea chrysantha. Khim Prirod Soedin 2:160–165 Mutanyatta J, Bezabih M, Abegaz BM, Dreyer M, Brun R, Kocher N, Bringmann G (2005) The first 6′-O-sulfated phenylanthraquinones: isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron 61:8475–8484 Nagarajan GR, Parmar VS (1977) Phloracetophenone derivatives in Prunus domestica. Phytochemistry 16:615–616 Pal T, Pal A (1996) Oxidative phenol coupling: a key step for the biomimetic synthesis of many important natural products. Curr Sci 71:106–108 Qhotsokoane-Lusunzi MA, Karuso P (2001a) Secondary metabolites from Basotho medicinal plants. I. Bulbine narcissifolia. J Nat Prod 64:1368–1372 Qhotsokoane-Lusunzi MA, Karuso P (2001b) Secondary metabolites from Basotho medicinal plants. II. Bulbine capitata. Aust J Chem 54:427–430 Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19:542–580 Shen B (2000) Biosynthesis of aromatic polyketides. In: Leeper FJ, Vedoras JC (eds) Topics in current chemistry, vol 209. Springer, Berlin, Heidelberg, pp 1–51 Stadler R, Loeffler S, Bruce KC, Zenk MH (1988) Bisbenzylisoquinoline biosynthesis in Berberis stolonifera cell cultures. Phytochemistry 27:2557–2565 Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416 Thomas R (2001) A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. ChemBioChem 2:612–627 Thomson RH (1997) Naturally occurring quinones IV. Recent advances Chapman and Hall, New York Wube AA, Bucar F, Asres K, Gibbons S, Rattray L, Croft SL (2005) Antimalarial compounds from Kniphofia foliosa roots. Phytother Res 19:472–476