Accurate discretization of poroelasticity without Darcy stability
Tóm tắt
In this manuscript we focus on the question: what is the correct notion of Stokes–Biot stability? Stokes–Biot stable discretizations have been introduced, independently by several authors, as a means of discretizing Biot’s equations of poroelasticity; such schemes retain their stability and convergence properties, with respect to appropriately defined norms, in the context of a vanishing storage coefficient and a vanishing hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is: one part Stokes stability and one part mixed Darcy stability. In this manuscript we remark on the observation that the latter condition can be generalized to a wider class of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed Darcy sub-problem is not strictly necessary to retain the practical advantages currently enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.
Tài liệu tham khảo
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS Project Version 1.5. Archive of Num. Soft. 3 (2015)
Bærland, T., Kuchta, M., Mardal, K.A., Thompson, T.: An observation on the uniform preconditioners for the mixed Darcy problem. Numer. Methods Partial Differ. Equ. 36(6), 1718–1734 (2020). https://doi.org/10.1002/num.22500
Bergh, J., Löfström, J.: Interpolation Spaces: A Series of Comprehensive Studies in Mathematics. Springer, New York (1976)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, 1st edn. Springer, Berlin (2013)
Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2002)
Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Publications mathématiques et informatique de Rennes S4, 1–26 (1974)
Brun, M.K., Ahmed, E., Berre, I., Nordbotten, J.M., Radu, F.A.: Monolithic and splitting based solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. arXiv preprint arXiv:1902.05783 (2019)
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)
Ern, A., Meunier, S.: A posteriori error analysis of Euler–Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: M2AN 43(2), 353–375 (2009). https://doi.org/10.1051/m2an:2008048
Evans, L.: Partial Differential Equations. American Mathematical Society, Providence, R.I. (2010)
Girault, V., Wheeler, M.F., Almani, T., Dana, S.: A priori error estimates for a discretized poro-elastic-elastic system solved by a fixed-stress algorithm. Oil Gas Sci. Technol. Revue d’IFP Energies nouvelles 74, 24 (2019)
Guo, L., Li, Z.: Ventikos, Yea: On the validation of a multiple-network poroelastic model using arterial spin labeling MRI data. Front. Comput. Neurosci. 13, 60 (2019)
Guo, L., Vardakis, J., Ventikos, Yea: Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8(1), 20170,019 (2018)
Guzman, J., Neilan, M.: Conforming and divergence-free stokes elements in three dimensions. IMA J. Numer. Anal. 34(4), 1489–1508 (2019). https://doi.org/10.1090/mcom/3346
Guzman, J., Scott, L.: The scott-vogelius finite elements revisited. Math. Comput. 88, 515–529 (2019). https://doi.org/10.1090/mcom/3346
Herrmann, L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3(10), 1896–1900 (1965)
Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. T. Numer. Anal. 48, 202–226 (2018)
Hong, Q., Kraus, J., Lymbery, M., Wheeler, M.F.: Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems. Multiscale Model. Simul. 18(2), 916–941 (2020)
Hu, X., Rodrigo, C., Gaspar, F.J., Zikatanov, L.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)
Kraus, J., Lederer, P., Lymbery, M., Schoberl, J.: Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model. Cold Spring Harbor Lab. (preprint) arXiv:2012.08584 (2020)
Kumar, S., Oyarzúa, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM Math. Model. Numer. Anal. 54(1), 273–299 (2020)
Lee, J.: Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. BIT Numer. Math. 58(2), 347–372 (2018)
Lee, J., Mardal, K.A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Scie. Comput. 39(1), A1–A24 (2017)
Lee, J., Piersanti, E., Mardal, K.A., Rognes, M.: A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41(2), A722–A747 (2019)
Li, X., Holst, H., Kleiven, S.: Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion. Comput. Methods Biomech. Biomed. Eng. 16(12), 1330–1343 (2013)
Lipnikov, K.: Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002)
Lotfian, Z., Sivaselvan, M.: Mixed finite element formulation for dynamics of porous media. Int. J. Numer. Methods Eng. 115, 141–171 (2018)
Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)
Riviere, B.: Discontinuous Galerkin methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Society for Industrial and Applied Mathematics (2008)
Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.: New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Eng. 341, 467–484 (2018)
Showalter, R.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 24(251), 310–340 (2000)
Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: On the optimization of the fixed-stress splitting for biot’s equations. Int. J. Numer. Methods Eng. 120(2), 179–194 (2019)
Thompson, T., Riviere, B., Knepley, M.: An implicit discontinuous galerkin method for modeling acute edema and resuscitation in the small intestine. Math Med. Biol. 36(4), 513–548 (2019)
Young, J., Riviere, B.: A mathematial model of intestinal oedema formation. Math. Med. Biol. 31(1), 1–15 (2014)
Zenisek, A.: The existence and uniqueness theorem in Biot’s consolidation theory. Aplikace Matematiky 29(3), 194–211 (1984)