Accurate Solution for Convective–Radiative Fin with Variable Thermal Conductivity and Nonlinear Boundary Condition by DTM
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kundu, B.: Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: unified and comparative investigations. Appl. Thermal Eng. 27, 976–987 (2007) doi: 10.1016/j.applthermaleng.2006.08.003
Kundu, B.: Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transf. 50, 1545–1558 (2007) doi: 10.1016/j.ijheatmasstransfer.2006.08.029
Coşkun, S.B.; Atay, M.T.: Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis. Math. Probl. Eng. (2007) doi: 10.1155/2007/42072
Coşkun, S.B.; Atay, M.T.: Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Thermal Eng. 28, 2345–2352 (2008) doi: 10.1016/j.applthermaleng.2008.01.012
Sharqawy, M.H.; Zubair, S.M.: Efficiency and optimization of straight fins with combined heat and mass transfer—an analytical solution. Appl. Thermal Eng. 28, 2279–2288 (2008) doi: 10.1016/j.applthermaleng.2008.01.003
Domairry, G.; Fazeli, M.: Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Commun. Nonlinear Sci. Numer. Simul. 14, 489–499 (2009). doi: 10.1016/j.cnsns.2007.09.007
Arslanturk, C.: Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity. Heat Mass Transf. 45(4), 519–525 (2009). doi: 10.1007/s00231-008-0446-9
Kulkarni, D.B.; Joglekar, M.M.: Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity. Appl. Math. Comput. 215, 2184–2191 (2009). doi: 10.1016/j.amc.2009.08.011
Khani, F.; Ahmadzadeh Raji, M.; Hamedi Nejad, H.: Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Commun. Nonlinear Sci. Numer. Simul. 14, 3327–3338 (2009). doi: 10.1016/j.cnsns.2009.01.012
Kundu, B.: Analysis of thermal performance and optimization of concentric circular fins under dehumidifying conditions. Int. J. Heat Mass Transf. 52, 2646–2659 (2009). doi: 10.1016/j.ijheatmasstransfer.2008.12.017
Fouladi, F.; Hosseinzadeh, E.; Barari, A.; Domairry, G.: Highly nonlinear temperature-dependent fin analysis by variational iteration method. Heat Transfer Res. 41, 155–165 (2010). doi: 10.1615/HeatTransRes.v41.i2.40
Khani, F.; Aziz, A.: Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Commun. Nonlinear Sci. Numer. Simul. 15, 590–601 (2010). doi: 10.1016/j.cnsns.2009.04.028
Zhou, J.K.: Differential transform and its applications for electrical circuits. Huarjung University Press, Wuhan (1986)
Zou, L.; Zong, Z.; Wang, Z.; Tian, S.: Differential transform method for solving solitary wave with discontinuity. Phys. Lett. A 374, 3451–3454 (2010). doi: 10.1016/j.physleta.2010.06.066
Abdel-Halim Hassan, I.H.: Application to differential transformation method for solving systems of differential equations. Appl. Math. Model. 32, 2552–2559 (2008). doi: 10.1016/j.apm.2007.09.025
Ravi Kanth, A.S.V.; Aruna, K.: Solution of singular two-point boundary value problems using differential transformation method. Phys. Lett. A 372, 4671–4673 (2008). doi: 10.1016/j.physleta.2008.05.019
Yalcin, H.S.; Arikoglu, A.; Ozkol, I.: Free vibration analysis of circular plates by differential transformation method. Appl. Math. Comput. 212, 377–386 (2009). doi: 10.1016/j.amc.2009.02.032
Jang, B.: Solving linear and nonlinear initial value problems by the projected differential transform method. Comput. Phys. Commun. 181, 848–854 (2010). doi: 10.1016/j.cpc.2009.12.020
Borhanifar, A.; Abazari, R.: Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method. Opt. Commun. 283, 2026–2031 (2010). doi: 10.1016/j.optcom.2010.01.046
Al-rabtah, A.; Ertürk, V.S.; Momani, S.: Solutions of a fractional oscillator by using differential transform method. Comput. Math. Appl. 59, 1356–1362 (2010). doi: 10.1016/j.camwa.2009.06.036
Abazari, R.; Borhanifar, A.: Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput. Math. Appl. 59, 2711–2722 (2010). doi: 10.1016/j.camwa.2010.01.039
Chu, H.P.; Chen, C.L.: Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem. Commun. Nonlinear Sci. Numer. Simul. 13, 1605–1614 (2008). doi: 10.1016/j.cnsns.2007.03.002
Chu, H.P.; Lo, C.Y.: Application of the hybrid differential transform-finite difference method to nonlinear transient heat conduction problems. Numer. Heat Transfer Part A 53, 295–307 (2008). doi: 10.1080/10407780701557931
Lo, C.Y.; Chen, B.Y.: Application of hybrid differential transform/control-volume method to hyperbolic heat conduction problems. Numer. Heat Transf. Part B 55, 219–231 (2009). doi: 10.1080/10407790802628796
Joneidi, A.A.; Ganji, D.D.; Babaelahi, M.: Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int. Commun. Heat Mass Transf. 36, 757–762 (2009). doi: 10.1016/j.icheatmasstransfer.2009.03.020
Jang, M.J.; Yeh, Y.L.; Chen, C.L.; Yeh, W.C.: Differential transformation approach to thermal conductive problems with discontinuous boundary condition. Appl. Math. Comput. 216, 2339–2350 (2010). doi: 10.1016/j.amc.2010.03.079
Rashidi, M.M.; Laraqi, N.; Sadri, S.M.: A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé. Int. J. Thermal Sci. 49, 2405–2412 (2010). doi: 10.1016/j.ijthermalsci.2010.07.005
Kundu, B.; Barman, D.: Analytical study on design analysis of annular fins under dehumidifying conditions with a polynomial relationship between humidity ratio and saturation temperature. Int. J. Heat Fluid Flow 31, 722–733 (2010). doi: 10.1016/j.ijheatfluidflow.2010.01.010
Yaghoobi, H.; Torabi, M.: The application of differential transformation method to nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 38, 815–820 (2011). doi: 10.1016/j.icheatmasstransfer.2011.03.025
Miansari, Mo.; Ganji, D.D.; Miansari, Me.: Application of He’s variational iteration method to nonlinear heat transfer equations. Phys. Lett. A 372, 779–785 (2008). doi: 10.1016/j.physleta.2007.08.065
Ganji, D.D.; Rajabi, A.: Assessment of homotopy–perturbation and perturbation methods in heat radiation equations. Int. Commun. Heat Mass Transf. 33, 391–400 (2006). doi: 10.1016/j.icheatmasstransfer.2005.11.001
Sajid, M.; Hayat, T.: Comparison of HAM and HPM solutions in heat radiation equations. Int. Commun. Heat Mass Transf. 36, 59–62 (2009). doi: 10.1016/j.icheatmasstransfer.2008.08.010
Bouaziz, M.N.; Aziz, A.: Simple and accurate solution for convective–radiative fin with temperature dependent thermal conductivity using double optimal linearization. Energy Convers. Manag. 51, 2776–2782 (2010). doi: 10.1016/j.enconman.2010.05.033
Ascher, U.; Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential–Algebraic Equations. SIAM, Philadelphia (1998)
Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P.: Introduction to Heat Transfer, 6th edn. Wiley, New York (2011)
Aziz, A.; Khan, W.A.: Classical and minimum entropy generation analyses for steady state conduction with temperature dependent thermal conductivity and asymmetric thermal boundary conditions: regular and functionally graded materials. Energy 36, 6195–6207 (2011). doi: 10.1016/j.energy.2011.07.042
Hassan, A.H.: Differential transformation technique for solving higher-order initial value problems. Appl. Math. Comput. 154, 299–311 (2004). doi: 10.1016/S0096-3003(03 )00708-2
Aziz A.; Torabi, M.: Convective–radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transf. Asian Res. 41(2), 99–113 (2012). doi: 10.1002/htj.20408
Aziz, A.: Heat Conduction with Maple. R.T. Edwards Inc., Philadelphia (2006)