Accuracy of history, physical examination, cardiac biomarkers, and biochemical variables in identifying dogs with stage B2 degenerative mitral valve disease

Journal of Veterinary Internal Medicine - Tập 35 Số 2 - Trang 755-770 - 2021
Jenny Wilshaw1, Steven L. Rosenthal2, Gerhard Wess3, David Dickson4, Luca Bevilacqua5, Emily Dutton6, Michael Deinert7, Ricardo Abrantes8, Ingo Schneider9, Mark A. Oyama10, Sonya G. Gordon11, Jonathan Elliott12, Dong Xia13, Adrian Boswood1
1Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
2CVCA Cardiac Care for Pets, Towson, Maryland, USA
3Clinic of Small Animal Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
4HeartVets, Porthcawl, UK
5Stamford Veterinary Centre, Lincolnshire, UK
6Cheshire Cardiology, Cheshire, UK
7Fachtierarztpraxis Am Sandpfad, Wiesloch, Germany
8RA Kardiologie, Muehlheim am Main, Germany
9Tierarzt Ingo Schneider, Nidderau, Germany
10Department of Veterinary Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
11College of Veterinary Medicine, Texas A&M University, College Station, Texas, USA
12Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London, UK
13Research Support Office, Royal Veterinary College, University of London, London, UK

Tóm tắt

AbstractBackgroundTreatment is indicated in dogs with preclinical degenerative mitral valve disease (DMVD) and cardiomegaly (stage B2). This is best diagnosed using echocardiography; however, relying upon this limits access to accurate diagnosis.ObjectivesTo evaluate whether cardiac biomarker concentrations can be used alongside other clinical data to identify stage B2 dogs.AnimalsClient‐owned dogs (n = 1887) with preclinical DMVD prospectively sampled in Germany, the United Kingdom, and the United States.MethodsDogs that met inclusion criteria and were not receiving pimobendan (n = 1245) were used for model development. Explanatory (multivariable logistic regression) and predictive models were developed using clinical observations, biochemistry, and cardiac biomarker concentrations, with echocardiographically confirmed stage B2 disease as the outcome. Receiver operating characteristic curves assessed the ability to identify stage B2 dogs.ResultsAge, appetite, serum alanine aminotransferase activity, body condition, serum creatinine concentration, murmur intensity, and plasma N‐terminal propeptide of B‐type natriuretic peptide (NT‐proBNP) concentration were independently associated with the likelihood of being stage B2. The discriminatory ability of this explanatory model (area under curve [AUC], 0.84; 95% confidence interval [CI], 0.82‐0.87) was superior to NT‐proBNP (AUC, 0.77; 95% CI, 0.74‐0.80) or the vertebral heart score alone (AUC, 0.76; 95% CI, 0.69‐0.83). A predictive logistic regression model could identify the probability of being stage B2 (AUC test set, 0.86; 95% CI, 0.81‐0.91).Conclusion and Clinical ImportanceOur findings indicate accessible measurements could be used to screen dogs with preclinical DMVD. Encouraging at‐risk dogs to seek further evaluation could result in a greater proportion of cases being appropriately managed.

Từ khóa


Tài liệu tham khảo

10.1186/1751-0147-46-121

10.1016/j.prevetmed.2015.05.007

10.1111/jvim.15488

10.1111/jvim.14586

10.1111/jvim.15390

10.1111/jvim.14885

10.1111/j.1939-1676.2011.00860.x

10.1111/jvim.15753

10.2460/javma.233.1.104

10.1046/j.0140-7783.2003.00543.x

10.1111/j.1748-5827.2009.00889.x

10.1016/j.jvc.2009.07.001

10.1111/j.1939-1676.2004.tb02629.x

10.1111/j.1748-5827.2005.tb00304.x

10.1111/j.1939-1676.2009.0428.x

10.1111/j.1939-1676.2012.00894.x

10.1111/jvim.15251

10.1016/j.cvsm.2013.07.005

10.1001/jama.1961.73040300014012

10.1111/jsap.12265

10.1093/jn/136.7.2031S

10.1111/j.1740-8261.2002.tb01051.x

10.1111/j.1939-1676.2004.tb02551.x

Buchanan JW, 1995, Vertebral scale system to measure canine heart size in radiographs, J Am Vet Med Assoc, 206, 194, 10.2460/javma.1995.206.02.194

10.1111/j.1740-8261.2005.00024.x

10.1111/j.1600-0587.2012.07348.x

Dohoo IR, 2009, Veterinary Epidemiologic Research

10.1371/journal.pone.0113677

BlagusR BabicS.abe: Augmented Backward Elimination;2017.

10.1002/9781118548387

10.2307/2531595

HarrellJrFE.rms: Regression Modeling Strategies.2019:1‐246.

Hoerl AE, 1970, Ridge regression: biased estimation for nonorthogonal problems, Dent Tech, 12, 55

10.1007/BF00994018

10.1023/A:1010933404324

ChenT GuestrinC.XGBoost: a scalable tree boosting system. Paper presented at: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York NY: Association for Computing Machinery;2016:785–794.

10.1007/978-3-319-19425-7

10.1186/1471-2288-14-40

10.1016/j.jvc.2012.01.009

10.1111/j.1939-1676.2009.0347.x

10.2460/javma.243.1.71

10.1016/j.jvc.2009.03.003

10.1016/j.jvc.2016.11.001

10.1111/jvim.12310

10.1111/j.1939-1676.1999.tb02166.x

10.1111/j.1748-5827.2004.tb00221.x

10.1111/jvim.12544

10.1007/s11897-011-0049-5

10.1111/j.1939-1676.2011.00782.x

10.1093/eurheartj/ehn359

10.1016/j.tvjl.2013.02.016

10.1136/heart.89.2.150

10.1016/j.yjmcc.2015.11.005

10.1016/j.jvc.2014.08.002

10.1093/eurheartj/ehs332

10.1136/gut.52.10.1511

10.1111/jvim.15678

Cawley GC, 2010, On over‐fitting in model selection and subsequent selection bias in performance evaluation, J Mach Learn Res, 11, 2079

10.1056/NEJMra1814259

10.1007/978-3-030-16399-0

10.1111/j.1467-2995.2011.00686.x