Accuracy of a time-of-flight (ToF) imaging system for monitoring deep-inspiration breath-hold radiotherapy (DIBH-RT) for left breast cancer patients
Tóm tắt
Deep inspiration breath-hold radiotherapy (DIBH-RT) reduces cardiac dose by over 50%. However, poor breath-hold reproducibility could result in target miss which compromises the treatment success. This study aimed to benchmark the accuracy of a Time-of-Flight (ToF) imaging system for monitoring breath-hold during DIBH-RT. The accuracy of an Argos P330 3D ToF camera (Bluetechnix, Austria) was evaluated for patient setup verification and intra-fraction monitoring among 13 DIBH-RT left breast cancer patients. The ToF imaging was performed simultaneously with in-room cone beam computed tomography (CBCT) and electronic portal imaging device (EPID) imaging systems during patient setup and treatment delivery, respectively. Patient surface depths (PSD) during setup were extracted from the ToF and the CBCT images during free breathing and DIBH using MATLAB (MathWorks, Natick, MA) and the chest surface displacement were compared. The mean difference ± standard deviation, correlation coefficient, and limit of agreement between the CBCT and ToF were 2.88 ± 5.89 mm, 0.92, and − 7.36, 1.60 mm, respectively. The breath-hold stability and reproducibility were estimated using the central lung depth extracted from the EPID images during treatment and compared with the PSD from the ToF. The average correlation between ToF and EPID was − 0.84. The average intra-field reproducibility for all the fields was within 2.70 mm. The average intra-fraction reproducibility and stability were 3.74 mm, and 0.80 mm, respectively. The study demonstrated the feasibility of using ToF camera for monitoring breath-hold during DIBH-RT and shows good breath-hold reproducibility and stability during the treatment delivery.
Tài liệu tham khảo
Roychoudhuri R, Putcha V, Møller H (2006) Cancer and laterality: a study of the five major paired organs (UK). Cancer Causes Control 17(5):655–662. https://doi.org/10.1007/s10552-005-0615-9
Beavis AW (2006) Treatment planning challenges in breast irradiation: the ideal and the Practical. Clin Oncol 18(3):200–209. https://doi.org/10.1016/j.clon.2005.11.012
Amer MH (2014) Genetic factors and breast cancer laterality. Cancer Manag Res 6(1):191–203. https://doi.org/10.2147/CMAR.S60006
McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM et al (2011) Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 100(2):167–175. https://doi.org/10.1016/j.radonc.2011.06.016
Wennstig AK, Wadsten C, Garmo H, Fredriksson I, Blomqvist C, Holmberg L et al (2020) Long-term risk of ischemic heart disease after adjuvant radiotherapy in breast cancer: results from a large population-based cohort. Breast Cancer Res 22(1):1–9. https://doi.org/10.1186/s13058-020-1249-2
Cheng YJ, Nie XY, Ji CC, Lin XX, Liu LJ, Chen XM et al (2017) Long-term cardiovascular risk after radiotherapy in women with breast cancer. J Am Heart Assoc. https://doi.org/10.1161/JAHA.117.005633
Bolukbasi Y, Saglam Y, Selek U, Topkan E, Kataria A, Unal Z, Alpan V (2014) Reproducible deep-inspiration breath-hold irradiation with forward intensity-modulated radiotherapy for left-sided breast cancer significantly reduces cardiac radiation exposure compared to inverse intensity-modulated radiotherapy. Tumori Journal 100(2):169–178. https://doi.org/10.1177/030089161410000209
Vikström J, Hjelstuen MHBB, Mjaaland I, Dybvik KI (2011) Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage. Acta Oncol 50(1):42–50. https://doi.org/10.3109/0284186X.2010.512923
Wang W, Purdie TG, Rahman M, Marshall A, Liu FF, Fyles A (2012) Rapid automated treatment planning process to select breast cancer patients for active breathing control to achieve cardiac dose reduction. Int J Radiat Oncol Biol Phys 82(1):386–393. https://doi.org/10.1016/j.ijrobp.2010.09.026
Osman SOS, Hol S, Poortmans PM, Essers M (2014) Volumetric modulated arc therapy and breath-hold in image-guided locoregional left-sided breast irradiation. Radiother Oncol 112(1):17–22. https://doi.org/10.1016/j.radonc.2014.04.004
Comsa D, Barnett E, Le K, Mohamoud G, Zaremski D, Fenkell L et al (2014) Introduction of moderate deep inspiration breath hold for radiation therapy of left breast: Initial experience of a regional cancer center. Pract Radiat Oncol 4(5):298–305. https://doi.org/10.1016/j.prro.2013.10.006
Duma MN, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R et al (2019) Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol. https://doi.org/10.1007/s00066-019-01495-w
Drost L, Yee C, Lam H, Zhang L, Wronski M, McCann C et al (2018) A systematic review of heart dose in breast radiotherapy. Clin Breast Cancer. https://doi.org/10.1016/j.clbc.2018.05.010
Taylor CW, Zhe W, Macaulay E, Jagsi R, Duane F, Darby SC (2015) Exposure of the heart in breast cancer radiation therapy: a systematic review of heart doses published during 2003 to 2013. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2015.07.2292
Conroy L, Guebert A, Smith WL (2017) Technical note: issues related to external marker block placement for deep inspiration breath hold breast radiotherapy: issues. Med Phys 44(1):37–42. https://doi.org/10.1002/mp.12005
Rong Y, Walston S, Welliver MX, Chakravarti A, Quick AM (2014) Improving intra-fractional target position accuracy using a 3D surface surrogate for left breast irradiation using the respiratory-gated deep-inspiration breath-hold technique. PLoS ONE 9(5):e97933. https://doi.org/10.1371/journal.pone.0097933
Lutz CM, Poulsen PR, Fledelius W, Offersen BV, Thomsen MS (2016) Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging. Acta Oncol 55(2):193–200. https://doi.org/10.3109/0284186X.2015.1045625
Eldredge-Hindy HB, Duffy D, Yamoah K, Simone NL, Skowronski J, Dicker AP, Anne PR (2015) Modeled risk of ischemic heart disease following left breast irradiation with deep inspiration breath hold. Pract Radiat Oncol 5(3):162–168. https://doi.org/10.1016/j.prro.2014.10.002
Simcock R, Thomas TV, Estes C, Filippi AR, Katz MA, Pereira IJ, Saeed H (2020) COVID-19: Global radiation oncology’s targeted response for pandemic preparedness. Clin Transl Radiat Oncol 22:55–68. https://doi.org/10.1016/j.ctro.2020.03.009
Foix S, Alenyà G, Torras C (2011) Lock-in ToF cameras: a survey. IEEE Sens J 11(9):1917–1926
Kim D, Lee S (2013) Advances in 3D camera: time-of-flight vs. active triangulation. In: Advances in intelligent systems and computing, vol 193 AISC. pp 301–309 https://doi.org/10.1007/978-3-642-33926-4_28
Langmann B, Hartmann K, Loffeld O (2012) Depth camera technology comparison and performance evaluation. In: ICPRAM 2012: proceedings of the 1st international conference on pattern recognition applications and methods, vol 2, pp. 438–444. https://doi.org/10.5220/0003778304380444
Hamming VC, Visser C, Batin E, McDermott LN, Busz DM, Both S et al (2019) Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol 14(1):4–11. https://doi.org/10.1186/s13014-019-1329-6
Alderliesten T, Sonke J-J, Betgen A, Honnef J, van Vliet-Vroegindeweij C, Remeijer P (2012) Application of 3D surface imaging in breast cancer radiotherapy. In: Holmes III DR, Wong KH (eds) Medical imaging 2012: image-guided procedures, robotic interventions, and modelling, vol 8316, p 83160A. https://doi.org/10.1117/12.911242
Alderliesten T, Sonke JJ, Betgen A, Honnef J, Van Vliet-Vroegindeweij C, Remeijer P (2013) Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy. Int J Radiat Oncol Biol Phys 85(2):536–542. https://doi.org/10.1016/j.ijrobp.2012.04.004
Ma Z, Zhang W, Su Y, Liu P, Pan Y, Zhang G, Song Y (2018) Optical surface management system for patient positioning in interfractional breast cancer radiotherapy. Biomed Res Int 2018:1–8. https://doi.org/10.1155/2018/6415497
Liu M, Wei X, Ding Y, Cheng C, Yin W, Chen J et al (2020) Application of optical laser 3D Surface imaging system (Sentinel) in breast cancer radiotherapy. Sci Rep. https://doi.org/10.1038/S41598-020-64496-1
Placht S, Stancanello J, Schaller C, Balda M, Angelopoulou E (2012) Fast time-of-flight camera based surface registration for radiotherapy patient positioning. Med Phys 39(1):4–17. https://doi.org/10.1118/1.3664006
Placht S, Schaller C, Balda M, Adelt A, Ulrich C, Hornegger J (2010) Improvement and evaluation of a time-of-flight-based patient positioning system. In: CEUR workshop proceedings, vol 574, pp 177–181. www.visionrt.com
Gilles M, Fayad H, Miglierini P, Clement JF, Scheib S, Cozzi L et al (2016) Patient positioning in radiotherapy based on surface imaging using time of flight cameras. Med Phys 43(8):4833–4841. https://doi.org/10.1118/1.4959536
Abubakar A, Zin HM (2020) Characterisation of time-of-flight (ToF) imaging system for application in monitoring deep inspiration breath-hold radiotherapy (DIBH-RT). Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/abc635
Schaller C, Penne J, Hornegger J (2008) Time-of-flight sensor for respiratory motion gating. Med Phys 35(7):3090–3093. https://doi.org/10.1118/1.2938521
Silverstein E, Snyder M (2018) Comparative analysis of respiratory motion tracking using Microsoft Kinect v2 sensor. J Appl Clin Med Phys 19(3):193–204. https://doi.org/10.1002/acm2.12318
Edmunds DM, Gothard L, Khabra K, Kirby A, Madhale P, McNair H et al (2018) Low-cost kinect version 2 imaging system for breath hold monitoring and gating: proof of concept study for breast cancer VMAT radiotherapy. J Appl Clin Med Phys 19(3):71–78. https://doi.org/10.1002/acm2.12286
Edmunds DM, Bashforth SE, Tahavori F, Wells K, Donovan EM (2016) The feasibility of using microsoft kinect v2 sensors during radiotherapy delivery. J Appl Clin Med Phys 17(6):446–453. https://doi.org/10.1120/jacmp.v17i6.6377
Abubakar A, Imran SS, Karim NKA, Kassim MZ, Gokula K, Norhafizah I, Zin HM (2020) Preliminary evaluation of Time-of-flight (ToF) imaging system for monitoring DIBH radiotherapy. J Phys 1497:012024. https://doi.org/10.1088/1742-6596/1497/1/012024
Levy A, Rivera S (2020) 1-week hypofractionated adjuvant whole-breast radiotherapy: towards a new standard? Lancet. https://doi.org/10.1016/S0140-6736(20)30978-8
Murray Brunt A, Haviland JS, Wheatley DA, Sydenham MA, Alhasso A, Bloomfield DJ et al (2020) Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet 395(10237):1613–1626. https://doi.org/10.1016/S0140-6736(20)30932-6
Estoesta RP, Attwood L, Naehrig D, Claridge-Mackonis E, Odgers D, Martin D et al (2017) Assessment of voluntary deep inspiration breath-hold with CINE imaging for breast radiotherapy. J Med Imaging Radiat Oncol 61(5):689–694. https://doi.org/10.1111/1754-9485.12616
Bartlett FR, Colgan RM, Carr K, Donovan EM, McNair HA, Locke I et al (2013) The UK HeartSpare study: randomised evaluation of voluntary deep-inspiratory breath-hold in women undergoing breast radiotherapy. Radiother Oncol 108(2):242–247. https://doi.org/10.1016/j.radonc.2013.04.021
Bartlett FR, Colgan RM, Donovan EM, Carr K, Landeg S, Clements N et al (2014) Voluntary breath-hold technique for reducing heart dose in left breast radiotherapy. J Visual Exp 89:e51578. https://doi.org/10.3791/51578
Koivumäki T, Tujunen J, Virén T, Heikkilä J, Seppälä J (2017) Geometrical uncertainty of heart position in deep-inspiration breath-hold radiotherapy of left-sided breast cancer patients. Acta Oncol 56(6):879–883. https://doi.org/10.1080/0284186X.2017.1298836
Jensen CA, Skottner N, Frengen J, Lund JÅ (2017) Development of a deep inspiration breath-hold system for radiotherapy utilizing a laser distance measurer. J Appl Clin Med Phys 18(1):260–264. https://doi.org/10.1002/acm2.12011
Schaller C, Adelt A, Penne J, Hornegger J (2009) Time-of-Flight sensor for patient positioning. In: Medical imaging 2009: visualization, image-guided procedures, and modeling, vol. 7261(June), p 726110. https://doi.org/10.1117/12.812498
Cravo Sá A, Fermento A, Neves D, Ferreira S, Silva T, Marques Coelho C et al (2018) Radiotherapy setup displacements in breast cancer patients: 3D surface imaging experience. Rep Pract Oncol Radiother 23(1):61–67. https://doi.org/10.1016/j.rpor.2017.12.007
Liu M, Wei X, Ding Y, Cheng C, Yin W, Chen J et al (2020) Application of optical laser 3D surface imaging system (Sentinel) in breast cancer radiotherapy. Sci Rep 10(1):7550. https://doi.org/10.1038/s41598-020-64496-1
Nazir S, Rihana S, Visvikis D, Fayad H (2018) Technical note: kinect V2 surface filtering during gantry motion for radiotherapy applications. Med Phys 45(4):1400–1407. https://doi.org/10.1002/mp.12801
Wentz T, Gilles M, Le Fur E, Pradier O, Visvikis D (2014) Stereo time-of-flight system for patient positioning in radiotherapy. Med Phys 41(6Part9):199–199. https://doi.org/10.1118/1.4888237
Ulrich C, Schaller C, Penne J, Hornegger J (2010) Evaluation of a time-of-flight-based respiratory motion management system. In: CEUR workshop proceedings, vol 574(January 2010), pp 152–156
Latty D, Stuart KE, Wang W, Ahern V (2015) Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci 62(1):74–81. https://doi.org/10.1002/jmrs.96
Reitz D, Walter F, Schönecker S, Freislederer P, Pazos M, Niyazi M et al (2020) Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer. Radiat Oncol. https://doi.org/10.1186/s13014-020-01572-w
Betgen A, Alderliesten T, Sonke JJ, Van Vliet-Vroegindeweij C, Bartelink H, Remeijer P (2013) Assessment of setup variability during deep inspiration breath hold radiotherapy for breast cancer patients by 3D-surface imaging. Radiother Oncol 106(2):225–230. https://doi.org/10.1016/j.radonc.2012.12.016
Kügele M, Edvardsson A, Berg L, Alkner S, Andersson Ljus C, Ceberg S (2018) Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys 19(1):25–38. https://doi.org/10.1002/acm2.12214
Cerviño LI, Gupta S, Rose MA, Yashar C, Jiang SB (2009) Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath hold for left-breast-cancer radiotherapy. Phys Med Biol 54(22):6853–6865. https://doi.org/10.1088/0031-9155/54/22/007
Fassi A, Ivaldi GB, Meaglia I, Porcu P, de Fatis PT, Liotta M et al (2014) Reproducibility of the external surface position in left-breast DIBH radiotherapy with spirometer-based monitoring. J Appl Clin Med Phys 15(1):130–140. https://doi.org/10.1120/jacmp.v15i1.4494
Xiao A, Crosby J, Malin M, Kang H, Washington M, Hasan Y et al (2018) Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys 19(4):205–213. https://doi.org/10.1002/acm2.12368
Kügele M, Mannerberg A, Nørring Bekke S, Alkner S, Berg L, Mahmood F et al (2019) Surface guided radiotherapy (SGRT) improves breast cancer patient setup accuracy. J Appl Clin Med Phys 20(9):61–68. https://doi.org/10.1002/acm2.12700