Accumulation of energy reserves in algae: From cell cycles to biotechnological applications

Biotechnology Advances - Tập 33 Số 6 - Trang 1204-1218 - 2015
Milada Vítová1, Kateřina Bišová1, Shigeyuki Kawano2, Vilém Zachleder1
1Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
2University of Tokyo, Chiba 277-8562, Japan.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abarzua, 1985, Die Wirkung von 3,4-Benzpyren auf die Ultrastruktur der Grünalge Scenedesmus quadricauda in Synchronkultur, Arch. Protistenk., 130, 143, 10.1016/S0003-9365(85)80039-7

Adams, 2014, Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon, J. Appl. Phycol., 26, 1351, 10.1007/s10811-013-0156-7

Allen, 2011, Evolution and metabolic significance of the urea cycle in photosynthetic diatoms, Nature, 473, 203, 10.1038/nature10074

Bachmann, 1983, Tight coordination of ribonucleotide reduction and thymidilate synthesis in synchronous algae, FEBS Lett., 152, 247, 10.1016/0014-5793(83)80389-5

Ball, 1998, Regulation of starch biosynthesis, 549

Ball, 1990, Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii, Science, 66, 1

Ballin, 1988, Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation, Biol. Plant., 30, 81, 10.1007/BF02878472

Behrens, 1989, Studies on the incorporation of CO2 into starch by Chlorella vulgaris, J. Appl. Phycol., 1, 123, 10.1007/BF00003874

Berg, 2002

Berková, 1972, Variation in photosynthetic characteristics of Scenedesmus quadricauda during the cell cycle, 2619

Bertozzini, 2013, Neutral lipid content and biomass production in Skeletonema marinoi (Bacillariophyceae) culture in response to nitrate limitation, Appl. Biochem. Biotechnol., 170, 1624, 10.1007/s12010-013-0290-3

Bišová, 2014, Cell-cycle regulation in green algae dividing by multiple fission, J. Exp. Bot., 65, 2585, 10.1093/jxb/ert466

Borowitzka, 2013

Brányiková, 2011, Microalgae-novel highly efficient starch producers, Biotechnol. Bioeng., 108, 766, 10.1002/bit.23016

Brennan, 2010, Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557, 10.1016/j.rser.2009.10.009

Breuer, 2012, The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains, Bioresour. Technol., 124, 217, 10.1016/j.biortech.2012.08.003

Breuer, 2013, Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus, Bioresour. Technol., 143, 1, 10.1016/j.biortech.2013.05.105

Breuer, 2014, Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors, Biotechnol. Biofuels, 7, 70, 10.1186/1754-6834-7-70

Cao, 2001, Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta), J. Appl. Phycol., 13, 25, 10.1023/A:1008131412909

Červený, 2013, Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, Proc. Natl. Acad. Sci. U. S. A., 110, 13210, 10.1073/pnas.1301171110

Chen, 2009, A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae, J. Microbiol. Methods, 77, 41, 10.1016/j.mimet.2009.01.001

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Chisti, 2011, Energy from algae: current status and future trends Algal biofuels — a status report, Appl. Energy, 88, 3277, 10.1016/j.apenergy.2011.04.038

Cisneros, 1993, Studies of 5-fluorodeoxyuridine 5′-monophosphate binding to carboxypeptidase A-inactivated thymidylate synthase from Lactobacillus casei, J. Biol. Chem., 268, 10102, 10.1016/S0021-9258(18)82177-9

Cole, 1998, Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons, J. Cell Biol., 141, 993, 10.1083/jcb.141.4.993

Converti, 2009, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chem. Eng. Process., 48, 1146, 10.1016/j.cep.2009.03.006

Cooksey, 1987, Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, J. Microbiol. Methods, 6, 333, 10.1016/0167-7012(87)90019-4

Cooper, 2010, Visualizing “green oil” in live algal cells, J. Biosci. Bioeng., 109, 198, 10.1016/j.jbiosc.2009.08.004

Curnutt, 1964, Possible mechanisms controlling the intracellular level of inorganic polyphosphate during synchronous growth of Chlorella pyrenoidosa. II. ATP/ADP ratio, Biochim. Biophys. Acta, 86, 201, 10.1016/0304-4165(64)90182-5

de Jaeger, 2014, Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization, Biotechnol. Biofuels, 7, 69, 10.1186/1754-6834-7-69

de la Jara, 2003, Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii, J. Appl. Phycol., 15, 433, 10.1023/A:1026007902078

de Winter, 2013, The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions, Algal Res., 2, 313, 10.1016/j.algal.2013.09.001

Doucha, 2006, Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate, J. Appl. Phycol., 18, 811, 10.1007/s10811-006-9100-4

Doucha, 2005, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7

Douskova, 2009, Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs, Appl. Microbiol. Biotechnol., 82, 179, 10.1007/s00253-008-1811-9

Doušková, 2010, Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products, Energy Convers. Manag., 51, 606, 10.1016/j.enconman.2009.11.008

Dragone, 2011, Nutrient limitation as a strategy for increasing starch accumulation in microalgae, Appl. Energy, 88, 3331, 10.1016/j.apenergy.2011.03.012

Dron, 2012, Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle, Environ. Microbiol., 14, 967, 10.1111/j.1462-2920.2011.02675.x

Dron, 2013, Photoperiod length paces the temporal orchestration of cell cycle and carbon–nitrogen metabolism in Crocosphaera watsonii, Environ. Microbiol., 15, 3292, 10.1111/1462-2920.12163

Duynstee, 1967, Total starch and amylose levels during synchronous growth of Chlorella pyrenoidosa, Arch. Biochem. Biophys., 119, 382, 10.1016/0003-9861(67)90469-9

Eriksen, 2007, On-line estimation of O(2) production, CO(2) uptake, and growth kinetics of microalgal cultures in a gas-tight photobioreactor, J. Appl. Phycol., 19, 161, 10.1007/s10811-006-9122-y

Feng, 2011, Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement, Bioresour. Technol., 102, 6710, 10.1016/j.biortech.2011.04.006

Fernandes, 2013, Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri, Bioresour. Technol., 144, 268, 10.1016/j.biortech.2013.06.096

Follmann, 1983, Deoxyribonucleotide biosynthesis: a critical process for life, 547

Gardner, 2013, Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii, Biotechnol. Bioeng., 10, 87, 10.1002/bit.24592

Geoffroy, 2007, Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii, Aquat. Toxicol., 83, 149, 10.1016/j.aquatox.2007.04.001

Gigova, 2012, Response of Trachydiscus minutus (Xanthophyceae) to temperature and light, J. Phycol., 48, 85, 10.1111/j.1529-8817.2011.01088.x

Goodenough, 2014, The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii, Eukaryot. Cell, 13, 591, 10.1128/EC.00013-14

Goodson, 2011, Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost, Eukaryot. Cell, 10, 1592, 10.1128/EC.05242-11

Harder, 1942, Bericht über Versuche zur Fettsynthese mittels autotropher Mikroorganismen, 16, 270

Harder, 1942, Die Massenkultur von Diatomeen, Ber. Deut. Bot. Ges., 60, 146

Harwood, 2009, The versatility of algae and their lipid metabolism, Biochimie, 91, 679, 10.1016/j.biochi.2008.11.004

Hase, 1958, The role of sulfur in the cell division of Chlorella, Arch. Mikrobiol., 32, 87, 10.1007/BF00409966

Hase, 1959, Role of sulfur in the cell division of Chlorella studied by technique of synchronous culture, Biochim. Biophys. Acta, 35, 180, 10.1016/0006-3002(59)90346-4

Hase, 1960, Role of sulfur in the cell division of Chlorella, with special reference to the sulfur compounds appearing during the process of cell division I, Plant Cell Physiol., 1, 131

Hase, 1960, Sulphur-containing deoxypentose polynucleotides obtained from Chlorella, Biochim. Biophys. Acta, 39, 381, 10.1016/0006-3002(60)90187-6

Hase, 1960, A short remark on the role of sulfur in the cell division of Chlorella, J. Gen. Appl. Microbiol., 6, 68, 10.2323/jgam.6.68

Hase, 1961, Role of sulfur in the cell division of Chlorella, with special reference to the sulfur compounds appearing during the process of cell division II, Plant Cell Physiol., 2, 9, 10.1093/oxfordjournals.pcp.a077668

Herrmann, 1965, Synthesis of phosphorus-containing macromolecules during synchronous growth of Chlorella pyrenoidosa, Biochim. Biophys. Acta, 95, 63, 10.1016/0005-2787(65)90211-X

Hildebrand, 2012, The place of diatoms in the biofuels industry, Biofuels, 3, 221, 10.4155/bfs.11.157

Hildebrand, 2013, Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production, Curr. Opin. Chem. Biol., 17, 506, 10.1016/j.cbpa.2013.02.027

Hirokawa, 1982, Correlation between the starch level and the rate of starch synthesis during the development cycle of Chlorella ellipsoidea, Plant Cell Physiol., 23, 813

Ho, 2010, Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production, Bioresour. Technol., 101, 8725, 10.1016/j.biortech.2010.06.112

Ho, 2011, Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N, Bioresour. Technol., 113, 244, 10.1016/j.biortech.2011.11.133

Hsieh, 2009, Cultivation of microalgae for oil production with a cultivation strategy of urea limitation, Bioresour. Technol., 100, 3921, 10.1016/j.biortech.2009.03.019

Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x

Hu, 2013, Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions, PLoS One, 8, 1

John, 2011, Micro and macroalgal biomass: a renewable source for bioethanol, Bioresour. Technol., 102, 186, 10.1016/j.biortech.2010.06.139

Johnson, 1966, Enzymic control of nucleic acid synthesis during synchronous growth of Chlorella pyrenoidosa. I. Deoxythymidine monophosphate kinase, Biochim. Biophys. Acta, 129, 140, 10.1016/0005-2787(66)90015-3

Kaštánek, 2010, In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide, Waste Manag. Res., 28, 961, 10.1177/0734242X10375866

Khotimchenko, 2005, Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance, Phytochemistry, 66, 73, 10.1016/j.phytochem.2004.10.024

Klein, 1987, Intracellular carbon partitioning in Chlamydomonas reinhardtii, Plant Physiol., 85, 892, 10.1104/pp.85.4.892

Klok, 2013, Simultaneous growth and neutral lipid accumulation in microalgae, Bioresour. Technol., 134, 233, 10.1016/j.biortech.2013.02.006

Lacour, 2012, Neutral lipid and carbohydrate productivities as a response to nitrogen status in Isochrysis sp. (T-iso; Haptophyceae): starvation vs. limitation, J. Phycol., 48, 647, 10.1111/j.1529-8817.2012.01154.x

Lamers, 2012, Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga, J. Biotechnol., 162, 21, 10.1016/j.jbiotec.2012.04.018

Levi, 1984, Starch degradation in synchronously grown Chlamydomonas reinhardtii and characterization of the amylase, Plant Physiol., 74, 459, 10.1104/pp.74.3.459

Li, 2010, Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol, Metab. Eng., 12, 387, 10.1016/j.ymben.2010.02.002

Li, 2010, Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii, Biotechnol. Bioeng., 107, 258, 10.1002/bit.22807

Li, 2011, Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature, Bioresour. Technol., 102, 3098, 10.1016/j.biortech.2010.10.055

Li, 2012, Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum, Biomass Bioenergy, 42, 199, 10.1016/j.biombioe.2012.03.010

Li, 2013, The microalga Parachlorella kessleri—a novel highly efficient lipid producer, Biotechnol. Bioeng., 110, 97, 10.1002/bit.24595

Lien, 1973, Phosphate as a control factor in cell division of Chlamydomonas reinhardti, studied in synchronous culture, Exp. Cell Res., 78, 79, 10.1016/0014-4827(73)90040-2

Liu, 2012, Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms, J. Exp. Mar. Biol. Ecol., 418, 24, 10.1016/j.jembe.2012.03.005

Lv, 2010, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797, 10.1016/j.biortech.2010.03.120

Mizuno, 2013, Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species, Bioresour. Technol., 129, 150, 10.1016/j.biortech.2012.11.030

Moellering, 2010, RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii, Eukaryot. Cell, 9, 97, 10.1128/EC.00203-09

Mujtaba, 2012, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279, 10.1016/j.biortech.2012.07.057

Mukherjee, 2010, Biochemical characterization of carotenoids in two species of Trentepohlia (Trentepohliales, Chlorophyta), J. Appl. Phycol., 22, 569, 10.1007/s10811-009-9495-9

Murakami, 1963, Electron microscope studies along cellular cycle in Chlorella ellipsoidea, 65

Nakamura, 2005, Nihei Sea. Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen, Plant Cell Physiol., 46, 539, 10.1093/pcp/pci045

Ota, 2009, Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate, Bioresour. Technol., 100, 5237, 10.1016/j.biortech.2009.05.048

Ota, 2013, Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation, Bioresour. Technol., 149, 432, 10.1016/j.biortech.2013.09.079

Otsuka, 1966, Change of fatty acid composition of Chlorella ellipsoidea during its cell cycle, Plant Cell Physiol., 7, 663, 10.1093/oxfordjournals.pcp.a079218

Pal, 2011, The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp., Appl. Microbiol. Biotechnol., 90, 1429, 10.1007/s00253-011-3170-1

Peled, 2012, Light-induced oil globule migration in Haematococcus pluvialis (Chlorophyceae), J. Phycol., 48, 1209, 10.1111/j.1529-8817.2012.01210.x

Přibyl, 2012, Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris, Appl. Microbiol. Biotechnol., 94, 549, 10.1007/s00253-012-3915-5

Přibyl, 2013, Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris, J. Appl. Phycol., 25, 545, 10.1007/s10811-012-9889-y

Přibyl, 2014, Oil overproduction by means of microalgae, 241

Pruvost, 2011, Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application, Bioresour. Technol., 102, 150, 10.1016/j.biortech.2010.06.153

Rabbani, 1998, Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil, Plant Physiol., 116, 1239, 10.1104/pp.116.4.1239

Ramazanov, 2006, Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content, Phycol. Res., 54, 255, 10.1111/j.1440-1835.2006.00416.x

Ratha, 2013, Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation, Aquaculture, 392–395, 69, 10.1016/j.aquaculture.2013.02.004

Reid, 1987

Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100, 10.1002/bit.22033

Roleda, 2013, Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy, Bioresour. Technol., 129, 439, 10.1016/j.biortech.2012.11.043

Schmidt, 1966, Intracellular control of enzyme synthesis and activity during synchronous growth of Chlorella, 189

Semenenko, 1972, Comparative study on the modification of photobiosynthesis direction in two Chlorella strains during decoupling of cellular functions by extreme temperature, Physiol. Plant, 19, 229

Semenenko, 1967, Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures I. Uncoupling effect of extreme temperatures on the cellular functions of Chlorella, Physiol. Plant., 14, 612

Semenenko, 1969, Physiological characteristics of Chlorella sp. K under conditions of high extremal temperatures II. Changes in biosynthesis, ultrastructure and activity of photosynthetic apparatus of Chlorella at uncoupling cellular functions at extreme temperature, Physiol. Plant., 16, 210

Šetlík, 1984, The multiple fission cell reproductive patterns in algae, 253

Šetlík, 1972, The coupling of synthetic and reproduction processes in Scenedesmus quadricauda. Arch Hydrobiol/Suppl 41, Algol. Stud., 7, 172

Šetlík, 1988, Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation, Biol. Plant., 30, 161, 10.1007/BF02878750

Shibata, 2009, Ueno c, Komatsu M et al. The MAP1-LC3 conjugation system is involved in lipid droplet formation, Biochem. Biophys. Res. Commun., 382, 419, 10.1016/j.bbrc.2009.03.039

Shibata, 2010, LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation, Biochem. Biophys. Res. Commun., 393, 274, 10.1016/j.bbrc.2010.01.121

Siaut, 2011, Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnol., 11, 7, 10.1186/1472-6750-11-7

Singh, 2011, Mechanism and challenges in commercialisation of algal biofuels, Bioresour. Technol., 102, 26, 10.1016/j.biortech.2010.06.057

Singh, 2011, Renewable fuels from algae: an answer to debatable land based fuels, Bioresour. Technol., 102, 10, 10.1016/j.biortech.2010.06.032

Solovchenko, 2012, Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses, Russ. J. Plant Physiol., 59, 167, 10.1134/S1021443712020161

Solovchenko, 2008, Screening of visible and UV radiation as a photoprotective mechanism in plants, Russ. J. Plant Physiol., 55, 719, 10.1134/S1021443708060010

Sorokin, 1957, Changes in photosynthetic activity in the course of cell development in Chlorella, Physiol. Plant., 10, 659, 10.1111/j.1399-3054.1957.tb06973.x

Spoehr, 1949, The chemical composition of Chlorella: effect of environmental conditions, Plant Physiol., 24, 10.1104/pp.24.1.120

Sukenik, 1991, Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae), Bioresour. Technol., 35, 263, 10.1016/0960-8524(91)90123-2

Takeshita, 2014, Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions, Bioresour. Technol., 158, 127, 10.1016/j.biortech.2014.01.135

Tamiya, 1964, Growth and cell division of Chlorella, 247

Tanadul, 2014, The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock, Biotechnol. Bioeng., 111, 1323, 10.1002/bit.25203

van den Hoek, 1995

Vigeolas, 2012, Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus, J. Biotechnol., 162, 3, 10.1016/j.jbiotec.2012.03.017

Vítová, 2005, Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae, Folia Microbiol., 50, 141, 10.1007/BF02931463

Vítová, 2011, Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda, Aquat. Toxicol., 102, 87, 10.1016/j.aquatox.2011.01.003

Vítová, 2011, Chlamydomonas reinhardtii: duration of its cell cycle and phases at growth rates affected by light intensity, Planta, 233, 75, 10.1007/s00425-010-1282-y

Wang, 2009, Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii, Eukaryot. Cell, 8, 1856, 10.1128/EC.00272-09

Wanka, 1970, Starch degrading enzymes in synchronous cultures of Chlorella, Z. Pflanzenphysiol., 62, 146

Wayama, 2013, Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis, PLoS One, 8, e53618, 10.1371/journal.pone.0053618

Work, 2010, Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains, Eukaryot. Cell, 9, 1251, 10.1128/EC.00075-10

Wu, 2013, Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species, Bioresour. Technol., 130, 599, 10.1016/j.biortech.2012.12.116

Xia, 2014, Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita, Mar. Drugs, 12, 4883, 10.3390/md12094883

Yang, 2012, Controlling the size of lipid droplets: lipid and protein factors, Curr. Opin. Cell Biol., 24, 509, 10.1016/j.ceb.2012.05.012

Yang, 2013, Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation, Biotechnol. Biofuels, 6, 1, 10.1186/1754-6834-6-67

Yao, 2012, Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation, Bioresour. Technol., 118, 438, 10.1016/j.biortech.2012.05.030

Yao, 2013, Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions, Appl. Microbiol. Biotechnol., 97, 6099, 10.1007/s00253-013-4983-x

Zabawinski, 2001, Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase, J. Bacteriol., 183, 1069, 10.1128/JB.183.3.1069-1077.2001

Zachleder, 1994, The effect of hydroxyurea and fluorodeoxyuridine on cell cycle events in the chlorococcal alga Scenedesmus quadricauda (Chlorophyta), J. Phycol., 30, 274, 10.1111/j.0022-3646.1994.00274.x

Zachleder, 1995, Regulation of growth processes during the cell cycle of the chlorococcal alga Scenedesmus quadricauda under a DNA replication block, J. Phycol., 30, 941, 10.1111/j.0022-3646.1995.00941.x

Zachleder, 2014, Starch overproduction by means of algae, 217

Zachleder, 1988, Distinct controls of DNA-replication and of nuclear division in the cell-cycles of the chlorococcal alga Scenedesmus quadricauda, J. Cell Sci., 91, 531, 10.1242/jcs.91.4.531

Zachleder, 1990, Timing of events in overlapping cell reproductive sequences and their mutual interactions in the alga Scenedesmus quadricauda, J. Cell Sci., 97, 631, 10.1242/jcs.97.4.631

Zachleder, 1992, Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors, J. Cell Sci., 102, 469, 10.1242/jcs.102.3.469

Zachleder, 1988, Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation, Biol. Plant., 30, 92, 10.1007/BF02878474

Zachleder, 1996, Uncoupling of chloroplast reproductive events from cell cycle division processes by 5-fluorodeoxyuridine in the alga Scenedesmus quadricauda, Protoplasma, 192, 228, 10.1007/BF01273894

Zachleder, 2002, Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors, Eur. J. Phycol., 37, 361, 10.1017/S0967026202003815

Zhang, 2002, Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga), Planta, 214, 552, 10.1007/s004250100660

Zhao, 2012, The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda, Bioresour. Technol., 114, 466, 10.1016/j.biortech.2012.02.129

Zheng, 2011, Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor, Afr. J. Biotechnol., 10, 1888

Zukova, 1969, Comparative characterisation of the growth and direction of biosynthesis of various strains of Chlorella under conditions of nitrogen starvation. II. Formation of carbohydrates and lipids, Plant Physiol., 16, 79