Accounting for spatial varying sampling effort due to accessibility in Citizen Science data: A case study of moose in Norway

Spatial Statistics - Tập 42 - Trang 100446 - 2021
Jorge Sicacha-Parada1, Ingelin Steinsland1, Benjamin Cretois2, Jan Borgelt3
1Department of Mathematical Sciences, NTNU (Norwegian University of Science and Technology), Norway)
2Department of Geography, NTNU, Norway
3Department of Energy and Process Engineering, NTNU, Norway

Tài liệu tham khảo

Bakar, 2015, Sptimer: Spatio-temporal bayesian modelling using R, J. Stat. Softw., 63, 1, 10.18637/jss.v063.i15 Barbet-Massin, 2012, Selecting pseudo-absences for species distribution models: how, where and how many?, Methods Ecol. Evol., 3, 327, 10.1111/j.2041-210X.2011.00172.x Blangiardo, 2015 Blindheim, 2019 Cameletti, 2019, Bayesian modelling for spatially misaligned health and air pollution data through the INLA-spde approach, Spat. Statist., 31, 100353, 10.1016/j.spasta.2019.04.001 Chakraborty, 2011, Point pattern modelling for degraded presence-only data over large regions, J. R. Stat. Soc. Ser. C. Appl. Stat., 60, 757, 10.1111/j.1467-9876.2011.00769.x Diggle, 2010, Geostatistical inference under preferential sampling, J. R. Stat. Soc. Ser. C. Appl. Stat., 59, 191, 10.1111/j.1467-9876.2009.00701.x Ferrier, 2002, Extended statistical approaches to modelling spatial pattern in biodiversity in northeast new south Wales. II. Community-level modelling, Biodivers. Conserv., 11, 2309, 10.1023/A:1021374009951 Fick, 2017, Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302, 10.1002/joc.5086 Fuglstad, 2019, Constructing priors that penalize the complexity of Gaussian random fields, J. Amer. Statist. Assoc., 114, 445, 10.1080/01621459.2017.1415907 Gelfand, 2019, Preferential sampling for presence/absence data and for fusion of presence/absence data with presence-only data, Ecol. Monograph, 89, 10.1002/ecm.1372 Gelman, 2014, Understanding predictive information criteria for Bayesian models, Stat. Comput., 24, 997, 10.1007/s11222-013-9416-2 Humphreys, 2017, A Bayesian geostatistical approach to modeling global distributions of lygodium microphyllum under projected climate warming, Ecol. Model., 363, 192, 10.1016/j.ecolmodel.2017.09.005 Hundertmark, 2016 Illian, 2013, Fitting complex ecological point process models with integrated nested Laplace approximation, Methods Ecol. Evol., 4, 305, 10.1111/2041-210x.12017 Illian, 2008 2019 Isaac, 2014, Statistics for citizen science: extracting signals of change from noisy ecological data, Methods Ecol. Evol., 5, 1052, 10.1111/2041-210X.12254 Kelling, 2015, Can observation skills of citizen scientists be estimated using species accumulation curves?, PLoS One, 10, 10.1371/journal.pone.0139600 Leblond, 2010, What drives fine-scale movements of large herbivores? A case study using moose, Ecography, 33, 1102, 10.1111/j.1600-0587.2009.06104.x Lindgren, 2011, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. R. Stat. Soc. Ser. B Stat. Methodol., 73, 423, 10.1111/j.1467-9868.2011.00777.x Mair, 2016, Explaining spatial variation in the recording effort of citizen science data across multiple taxa, PLOS ONE, 11, 1, 10.1371/journal.pone.0147796 Messier, 1991, The significance of limiting and regulating factors on the demography of moose and white-tailed deer, J. Anim. Ecol., 377, 10.2307/5285 Monsarrat, 2019, Accessibility maps as a tool to predict sampling bias in historical biodiversity occurrence records, Ecography, 42, 125, 10.1111/ecog.03944 2019 2019 Newman, 2012, The future of citizen science: emerging technologies and shifting paradigms, Front. Ecol. Environ., 10, 298, 10.1890/110294 Pettit, 1990, The conditional predictive ordinate for the normal distribution, J. R. Stat. Soc. Ser. B Stat. Methodol., 52, 175 Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Model., 190, 231, 10.1016/j.ecolmodel.2005.03.026 Phillips, 2009, Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecol. Appl., 19, 181, 10.1890/07-2153.1 Pomeroy, 1998, An evaluation of snow accumulation and ablation processes for land surface modelling, Hydrol. Process., 12, 2339, 10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L Ramsay, 1988, Monotone regression splines in action, Statist. Sci., 3, 425 Rue, 2009, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 319, 10.1111/j.1467-9868.2008.00700.x Sadykova, 2017, Bayesian joint models with INLA exploring marine mobile predator–prey and competitor species habitat overlap, Ecol. Evol., 7, 5212, 10.1002/ece3.3081 Shipley, 2010, Fifty years of food and foraging in moose: lessons in ecology from a model herbivore, Alces:J. Devot. Biol. Manage. Moose, 46, 1 Simpson, 2016, Going off grid: computationally efficient inference for log-Gaussian cox processes, Biometrika, 103, 49, 10.1093/biomet/asv064 Sørbye, 2019, Careful prior specification avoids incautious inference for log-Gaussian cox point processes, J. R. Stat. Soc. Ser. C. Appl. Stat., 68, 543, 10.1111/rssc.12321 Spiegelhalter, 2002, Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 583, 10.1111/1467-9868.00353 Strasser, 2019, “Citizen science”? Rethinking science and public participation, Sci. Technol. Stud., 32, 52 Title, 2018, Envirem: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling, Ecography, 41, 291, 10.1111/ecog.02880 Watanabe, 2010, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, J. Mach. Learn. Res., 11, 3571 Yuan, 2017, Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales, Ann. Appl. Stat., 11, 2270, 10.1214/17-AOAS1078