Accident tolerant fuel cladding development: Promise, status, and challenges

Journal of Nuclear Materials - Tập 501 - Trang 13-30 - 2018
Kurt A. Terrani1
1Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rickover, 1975

Pomerance, 1951, Thermal neutron capture cross sections, Phys. Rev., 83, 641, 10.1103/PhysRev.83.641

K.M. Goldman, reportReport of the March 1953 Meeting of the Zirconium Alloy Corrosion Committee, Westinghouse Electric Corp. Atomic Power Div., Pittsburgh, 1953.

Strasser, 1982

Terrani, 2014, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater, 448, 420, 10.1016/j.jnucmat.2013.06.041

2017

Greenblatt, 2017, The future of low-carbon electricity, Annu. Rev. Environ. Resour, 42, 289, 10.1146/annurev-environ-102016-061138

Ledergerber, 2010, Fuel performance beyond design – exploring the limits, vol 2010, 513

IAEA, 1993

2010

Yang, 2006, Fuel R&D to improve fuel reliability, J. Nucl. Sci. Technol, 43, 951, 10.1080/18811248.2006.9711181

Edsinger, 2010, EPRI and the zero fuel failures program, Nucl. News, 53, 40

Adamson, 2000, Effects of neutron irradiation on microstructure and properties of Zircaloy, 15

Adamson, 2010

Shishov, 2012, The evolution of microstructure and deformation stability in Zr-Nb-(Sn, Fe) alloys under neutron irradiation

Motta, 2015, Corrosion of zirconium alloys used for nuclear fuel cladding, Annu. Rev. Mater. Res., 45, 311, 10.1146/annurev-matsci-070214-020951

10 Code of Federal Regulation 50.46, n.d.

Johnston, 1977, Zircaloy—three years after the hearings

Taleb, 2007

2009

Zinkle, 2014, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater, 448, 374, 10.1016/j.jnucmat.2013.12.005

Powers, 1980

Erbacher, 1985

Billone, 2008

Wiesenack, 2013, Summary of the halden reactor project LOCA test series IFA-650, Proc. Enlarg. Halden Progr. Gr. Mtg., Storefjell, Norway

Ott, 2014, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater, 448, 520, 10.1016/j.jnucmat.2013.09.052

Robb, 2015, Analysis of the FeCrAl accident tolerant fuel concept benefits during BWR station blackout accidents, Proc. 16th Int. Top. Meet. Nucl. React. Therm. Hydraul, 1183

Farmer, 2014, Scoping assessments of ATF impact on late-stage accident progression including molten core–concrete interaction, J. Nucl. Mater, 448, 534, 10.1016/j.jnucmat.2013.12.022

Merrill, 2017, Modification of MELCOR for severe accident analysis of candidate accident tolerant cladding materials, Nucl. Eng. Des, 315, 170, 10.1016/j.nucengdes.2017.02.021

Carmack, 2013

Massara, 2012

Kurata, 2016, Research and development methodology for practical use of accident tolerant fuel in light water reactors, Nucl. Eng. Technol, 48, 26, 10.1016/j.net.2015.12.004

Koo, 2014, KAERI's development of LWR accident-tolerant fuel, Nucl. Technol, 186, 295, 10.13182/NT13-89

Cheng, 2012, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure, J. Nucl. Mater, 427, 396, 10.1016/j.jnucmat.2012.05.007

Pint, 2013, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater, 440, 420, 10.1016/j.jnucmat.2013.05.047

Pint, 2015, Material Selection for accident tolerant fuel cladding, Metall. Mater. Trans. E, 2, 190

Brassfield, 1968

Cathcart, 1977

Terrani, 2014, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc., 97, 2331, 10.1111/jace.13094

Steinbrück, 2011, Oxidation of advanced zirconium cladding alloys in steam at temperatures in the range of 600–1200° C, Oxid. Met, 76, 215, 10.1007/s11085-011-9249-3

Tedmon, 1966, The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys, J. Electrochem. Soc., 113, 766, 10.1149/1.2424115

Opila, 2004, Alumina volatility in water vapor at elevated temperatures, J. Am. Ceram. Soc., 87, 1701, 10.1111/j.1551-2916.2004.01701.x

Hashimoto, 1992, The effect of H2O gas on volatilities of planet-forming major elements: I. experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula, Geochim. Cosmochim. Acta, 56, 511, 10.1016/0016-7037(92)90148-C

Holt, 1988, Mechanisms of irradiation growth of alpha-zirconium alloys, J. Nucl. Mater, 159, 310, 10.1016/0022-3115(88)90099-2

V Mader, 2011, EPRI BWR channel distortion program, 1

Freshley, 1976, Irradiation-induced densification of UO2 pellet fuel, J. Nucl. Mater, 62, 138, 10.1016/0022-3115(76)90013-1

Serna, 2006, Experimental observations on fuel pellet performance at high burnup, J. Nucl. Sci. Technol, 43, 1045, 10.1080/18811248.2006.9711194

Siefken, 2001, MATPRO - a library of materials properties for light-water-reactor accident analysis, SCDAP/RELAP5/MOD 3.3 Code Manual, 4

Cox, 1990, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding—a review, J. Nucl. Mater, 172, 249, 10.1016/0022-3115(90)90282-R

Piro, 2017, A review of pellet–clad interaction behavior in zirconium alloy fuel cladding

Videm, 1979, Cracking of cladding tubes caused by power ramping and by laboratory stress corrosion experiments, J. Nucl. Mater, 87, 259, 10.1016/0022-3115(79)90562-2

Brown, 2017, The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors, Ann. Nucl. Energy, 99, 353, 10.1016/j.anucene.2016.09.033

Solomon, 1973, Radiation-induced creep of UO2, J. Am. Ceram. Soc., 56, 164, 10.1111/j.1151-2916.1973.tb15435.x

Dienst, 1992, Reduction of the mechanical strength of Al2O3, AlN and SiC under neutron irradiation, J. Nucl. Mater., 191–194, 555

Szőke, 2014

Cockeram, 2011, Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358°C, J. Nucl. Mater, 418, 46, 10.1016/j.jnucmat.2011.07.006

V Cockeram, 2014, Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377–440° C, J. Nucl. Mater, 449, 69, 10.1016/j.jnucmat.2014.03.004

Farrell, 2001, Tensile properties of candidate SNS target container materials after proton and neutron irradiation in the LANSCE accelerator, J. Nucl. Mater, 296, 129, 10.1016/S0022-3115(01)00515-3

Garde, 1989, Effects of irradiation and hydriding on the mechanical properties of Zircaloy-4 at high fluence

Garde, 1996, Effects of hydride precipitate localization and neutron fluence on the ductility of irradiated Zircaloy-4

Nagase, 2005, Investigation of hydride rim effect on failure of Zircaloy-4 cladding with tube burst test, J. Nucl. Sci. Technol, 42, 58, 10.1080/18811248.2005.9726364

Nakatsuka, 2012, Effect of hydrides on mechanical properties and failure morphology of BWR fuel cladding at very high strain rate

Zinkle, 2013, Materials challenges in nuclear energy, Acta Mater, 61, 735, 10.1016/j.actamat.2012.11.004

Crawford, 2007, Fuels for sodium-cooled fast reactors: US perspective, J. Nucl. Mater, 371, 202, 10.1016/j.jnucmat.2007.05.010

2012

Todreas, 1993

Couet, 2014, Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics, J. Nucl. Mater, 451, 1, 10.1016/j.jnucmat.2014.03.001

Terrani, 2014, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents, J. Nucl. Mater, 448, 512, 10.1016/j.jnucmat.2013.09.051

Meyer, 2013

Erbacher, 1982, Burst criterion of Zircaloy fuel claddings in a loss-of-coolant accident, 271

Fuchs, 1946

Nordheim, 1946

MacDonald, 1980

Sugiyama, 2009, Failure of high burnup fuels under reactivity-initiated accident conditions, Ann. Nucl. Energy, 36, 380, 10.1016/j.anucene.2008.12.003

Park, 2012, Comparative analysis of station blackout accident progression in typical PWR, BWR, and PHWR, Nucl. Eng. Technol, 44, 311, 10.5516/NET.03.2011.046

Hofmann, 1999, Current knowledge on core degradation phenomena, a review, J. Nucl. Mater, 270, 194, 10.1016/S0022-3115(98)00899-X

Tang, 2017, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, Corros. Rev., 35, 141, 10.1515/corrrev-2017-0010

Lee, 2017, Mechanical analysis of surface-coated zircaloy cladding, Nucl. Eng. Technol, 49, 1031, 10.1016/j.net.2017.03.012

Younker, 2016, Neutronic evaluation of coating and cladding materials for accident tolerant fuels, Prog. Nucl. Energy, 88, 10, 10.1016/j.pnucene.2015.11.006

Kam, 2015, Critical heat flux for SiC-and Cr-coated plates under atmospheric condition, Ann. Nucl. Energy, 76, 335, 10.1016/j.anucene.2014.09.046

Bryan, 1993

Gray, 2007

Idarraga-Trujillo, 2013, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions, vol 2013, 860

Kim, 2015, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater, 465, 531, 10.1016/j.jnucmat.2015.06.030

Shah, 2017, Development of surface coatings for enhanced accident tolerant fuel

Kim, 2017, Progress of surface modified Zr cladding development for ATF at KAERI

Daub, 2015, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater, 467, 260, 10.1016/j.jnucmat.2015.09.041

Kuprin, 2015, Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air, J. Nucl. Mater, 465, 400, 10.1016/j.jnucmat.2015.06.016

Brachet, 2015, On-going studies at cea on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel, 31

Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coatings Technol, 280, 256, 10.1016/j.surfcoat.2015.09.022

Park, 2016, Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions, J. Nucl. Mater, 482, 75, 10.1016/j.jnucmat.2016.10.021

Brachet, 2017, Behavior of chromium coated M5 claddings under LOCA conditions

Wu, 2017, HRTEM and chemical study of an ion-irradiated chromium/Zircaloy-4 interface, J. Nucl. Mater

Zinkle, 2014, Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res., 44, 241, 10.1146/annurev-matsci-070813-113627

Van Nieuwenhove, 2017, In-pile testing of CrN, TiAlN and AlCrN Coatings on zircaloy cladding in the halden reactor

Steinbrück, 2009, Prototypical experiments relating to air oxidation of Zircaloy-4 at hightemperatures, J. Nucl. Mater, 392, 531, 10.1016/j.jnucmat.2009.04.018

Terrani, 2014, High-temperature steam oxidation of accident tolerant fuel cladding candidate materials, 169

Barsoum, 2000, The M(N+1)AX(N) phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 28, 201, 10.1016/S0079-6786(00)00006-6

Maier, 2015, Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding, J. Nucl. Mater, 466, 712, 10.1016/j.jnucmat.2015.06.028

Yeom, 2016, Laser surface annealing and characterization of Ti 2 AlC plasma vapor deposition coating on zirconium-alloy substrate, Thin Solid Films, 615, 202, 10.1016/j.tsf.2016.07.024

Alat, 2015, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coatings Technol, 281, 133, 10.1016/j.surfcoat.2015.08.062

Alat, 2016, Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding, J. Nucl. Mater, 478, 236, 10.1016/j.jnucmat.2016.05.021

Lambrinou, 2017, Innovative accident-tolerant fuel cladding materials: the H2020 IL TROVATORE Perspective

Roberts, 2016

Terrani, 2013, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, J. Nucl. Mater. submitted, 64, 10.1016/j.jnucmat.2013.03.006

Bischoff, 2017, AREVA NP’S enhanced accident tolerant fuel developments: focus on Cr-coated M5™ cladding, Water React. Fuel Perform. Meet., Jeju Island, Korea

Van Nieuwenhove, 2014

Ang, 2016, Anisotropic swelling and microcracking of neutron irradiated Ti 3 AlC 2–Ti 5 Al 2 C 3 materials, Scr. Mater, 114, 74, 10.1016/j.scriptamat.2015.11.008

Ang, 2017, Phase stability, swelling, microstructure and strength of Ti 3 SiC 2-TiC ceramics after low dose neutron irradiation, J. Nucl. Mater, 483, 44, 10.1016/j.jnucmat.2016.10.036

Pint, 2015, SATS update and community testing

Brova, 2017, Undoped and ytterbium-doped titanium aluminum nitride coatings for improved oxidation behavior of nuclear fuel cladding, Surf. Coatings Technol, 331, 163, 10.1016/j.surfcoat.2017.09.076

Doyle, 2018, Characterization of the hydrothermal corrosion behavior of ceramics for accident tolerant fuel cladding, 269

Powers, 1980, Cladding swelling and rupture models for LOCA analysis, NUREG-0630, Nuclear Regulatory Commission

Michau, 2017, Inner-side coatings for advanced fuel claddings processed by DLI-MOCVD

Skarohlid, 2017, High temperature behaviour of CrAlSiN max phase coatings on zirconium alloy

10CFR Part 50–Domestic licensing of production and utilization facilities, US Nuclear Regulatory Commission, n.d.

Walters, 1984, Performance of metallic fuels and blankets in liquid-metal fast breeder reactors, Nucl. Technol, 65, 179, 10.13182/NT84-A33408

Clayton, 1993

Armijo, 1994, Development of zirconium-barrier fuel cladding

Andresen, 2014, 9

1963

1964

1965

1966

1967

1968

1969

Pint, 2017, Evaluation of Fe-Cr alloys for accident tolerant fuel cladding, Oxid. Met, 87, 515, 10.1007/s11085-017-9754-0

Grobner, 1973, The 885 F (475 C) embrittlement of ferritic stainless steels, Metall. Trans., 4, 251, 10.1007/BF02649625

Bachhav, 2014, α′ precipitation in neutron-irradiated Fe–Cr alloys, Scr. Mater, 74, 48, 10.1016/j.scriptamat.2013.10.001

George, 2015, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors, Ann. Nucl. Energy, 75, 703, 10.1016/j.anucene.2014.09.005

Pint, 2017

Brady, 2008, The development of alumina-forming austenitic stainless steels for high-temperature structural use, JOM J. Miner. Met. Mater. Soc., 60, 12, 10.1007/s11837-008-0083-2

Pint, 2015, The effect of steam on the high temperature oxidation behavior of alumina-forming alloys, Mater. High Temp., 32, 28, 10.1179/0960340914Z.00000000058

Pint, 2017, Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam, Corros. Rev., 35, 167, 10.1515/corrrev-2016-0067

Unocic, 2017, Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy, Oxid. Met, 87, 431, 10.1007/s11085-017-9745-1

Field, 2018, Accident tolerant FeCrAl fuel cladding: current status towards commercialization, 165

Rebak, 2016, FeCrAl alloys for accident tolerant fuel cladding in light water reactors

Rebak, 2017, Improving nuclear power plant safety with FeCrAl alloy fuel cladding, MRS Adv, 1

Sakamoto, 2016, Development of Ce-type FeCrAl-ODS ferritic steel to accident tolerant fuel for BWRs, Proc. TopFuel2016, 673

Sakamoto, 2017, Overview of Japanese development of accident tolerant FeCrAl-ODS fuel claddings for BWRs, Proc. WRFPM2017

Yamashita, 2017, Technical basis of accident tolerant fuel updated under a Japanese R&D Project, Water React. Fuel Perform. Meet., Jeju Island, Korea

Yamamoto, 2015, Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors, J. Nucl. Mater, 467, 703, 10.1016/j.jnucmat.2015.10.019

Ukai, 2016, Development of FeCrAl-ODS steels for ATF cladding, 681

Field, 2015, Radiation tolerance of neutron-irradiated model Fe–Cr–Al alloys, J. Nucl. Mater, 465, 746, 10.1016/j.jnucmat.2015.06.023

Edmondson, 2016, Irradiation-enhanced α′ precipitation in model FeCrAl alloys, Scr. Mater, 116, 112, 10.1016/j.scriptamat.2016.02.002

Briggs, 2017, A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys, Acta Mater, 129, 217, 10.1016/j.actamat.2017.02.077

Field, 2017, Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys, J. Nucl. Mater, 489, 118, 10.1016/j.jnucmat.2017.03.038

Unocic, 2015, Microstructure and environmental resistance of low Cr ODS FeCrAl, Mater, High Temp, 32, 123, 10.1179/0960340914Z.00000000088

Nagase, 2017, Performance degradation of candidate accident-tolerant cladding under corrosive environment, Corros. Rev., 35, 129, 10.1515/corrrev-2017-0014

Gussev, 2017, Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys, Mater. Des, 129, 227, 10.1016/j.matdes.2017.05.009

McMurray, 2017, Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels, J. Nucl. Mater, 492, 128, 10.1016/j.jnucmat.2017.05.016

Sakamoto, 2015, A preliminary assessment of applicability of ferritic ods fe-cr-al alloy to accident tolerant fuel and control rod for LWRs

Field, 2017

Sun, 2017, Microstructural control of FeCrAl alloys using Mo and Nb additions, Mater. Charact, 132, 126, 10.1016/j.matchar.2017.08.008

Sun, 2017, Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication, Mater. Sci. Eng. A, 700, 554, 10.1016/j.msea.2017.06.036

Pint, 2014, Development of ODS FeCrAl for compatibility in fusion and fission energy applications, JOM, 66, 2458, 10.1007/s11837-014-1200-z

Yano, 2017, Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions, J. Nucl. Mater, 487, 229, 10.1016/j.jnucmat.2017.02.021

Field, 2014, Deformation behavior of laser welds in high temperature oxidation resistant Fe–Cr–Al alloys for fuel cladding applications, J. Nucl. Mater, 454, 352, 10.1016/j.jnucmat.2014.08.013

Gan, 2017, Weld development of Fe-Cr-Al thin-wall cladding for LWR accident tolerant fuel

Field, 2017

Terrani, 2016, Uniform corrosion of FeCrAl alloys in LWR coolant environments, J. Nucl. Mater, 479, 36, 10.1016/j.jnucmat.2016.06.047

Rebak, 2015, Alloy selection for accident tolerant fuel cladding in commercial light water reactors, Metall. Mater. Trans. E, 2, 197

Wang, 2018, In-situ proton irradiation-corrosion study of ATF candidate alloys in simulated pwr primary water, 245

Rebak, 2017, Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments, Corros. Rev., 35, 177, 10.1515/corrrev-2017-0011

Rebak, 2014

Greenwood, 1985

Norgett, 1975, A proposed method of calculating displacement dose rates, Nucl. Eng. Des, 33, 50, 10.1016/0029-5493(75)90035-7

Gamble, 2017, An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions, J. Nucl. Mater, 491, 55, 10.1016/j.jnucmat.2017.04.039

Sweet, 2018, Fuel performance simulation of iron-chrome-aluminum (FeCrAl) cladding during steady-state LWR operation, Nucl. Eng. Des., 328, 10, 10.1016/j.nucengdes.2017.11.043

Yamaji, 2017, FEMAXI-7 prediction of the behavior of BWR-type accident tolerant fuel rod with FeCrAl-ODS steel cladding in normal condition

Liu, 2017, Potential impact of accident tolerant fuel cladding critical heat flux characteristics on the high temperature phase of reactivity initiated accidents, Ann. Nucl. Energy, 110, 48, 10.1016/j.anucene.2017.06.016

Massey, 2016, Cladding burst behavior of Fe-based alloys under LOCA, J. Nucl. Mater, 470, 128, 10.1016/j.jnucmat.2015.12.018

Yan, 2014, Post-quench ductility evaluation of Zircaloy-4 and select iron alloys under design basis and extended LOCA conditions, J. Nucl. Mater, 448, 436, 10.1016/j.jnucmat.2013.05.071

Dolley, 2018, Mechanical behavior of FeCrAl and other alloys following exposure to LOCA conditions plus quenching, 185

Unocic, 2016, Advanced TEM characterization of oxide nanoparticles in ODS Fe – 12Cr–5Al alloys, J. Mater. Sci., 9190, 10.1007/s10853-016-0111-5

Cinbiz, 2017, A pulse-controlled modified-burst test instrument for accident-tolerant fuel cladding, Ann. Nucl. Energy, 109, 396, 10.1016/j.anucene.2017.05.058

Pint, 1996, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect, Oxid. Met, 45, 1, 10.1007/BF01046818

Burns, 2017, Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts, Ann. Nucl. Energy, 110, 1249, 10.1016/j.anucene.2017.08.004

Brown, 2015, Screening of advanced cladding materials and UN–U 3 Si 5 fuel, J. Nucl. Mater, 462, 26, 10.1016/j.jnucmat.2015.03.016

Takano, 2017, Analytical study of the applicability of FeCrAl-ods cladding for BWR

Peñalva, 2013, Influence of the Cr content on the permeation of hydrogen in Fe alloys, J. Nucl. Mater, 442, S719, 10.1016/j.jnucmat.2012.10.032

Hu, 2015, Hydrogen permeation in FeCrAl alloys for LWR cladding application, J. Nucl. Mater, 461, 282, 10.1016/j.jnucmat.2015.02.040

Wang, 1995, Thermodynamics of the Zr-H system, J. Am. Ceram. Soc., 78, 3323, 10.1111/j.1151-2916.1995.tb07972.x

Causey, 2012, Tritium barriers and tritium diffusion in fusion reactors, vol. 4, 511

Huffine, 1960, Hydrogen permeation through metals, alloys and oxides at elevated temperatures, Corrosion, 16, 430t, 10.5006/0010-9312-16.9.102

Rebak, 2016, Hydrogen diffusion in FeCrAl alloys for light water reactors cladding applications, 17

Li, 2017

Robb, 2016

Steinbrück, 2010, Synopsis and outcome of the QUENCH experimental program, Nucl. Eng. Des, 240, 1714, 10.1016/j.nucengdes.2010.03.021

Zok, 2016, Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency, Am Ceram Soc Bull., 95, 22

Yajima, 1976, Development of a silicon carbide fibre with high tensile strength, Nature, 261, 683, 10.1038/261683a0

Yajima, 1976, Synthesis of continuous SiC fibers with high tensile strength, J. Am. Ceram. Soc., 59, 324, 10.1111/j.1151-2916.1976.tb10975.x

Price, 1969, Effects of fast neutron irradiation on pyrolytic silicon carbide, J. Nucl. Mater, 33, 17, 10.1016/0022-3115(69)90003-8

Katoh, 2014, Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects, J. Nucl. Mater, 448, 448, 10.1016/j.jnucmat.2013.06.040

Kondo, 2015, Irradiation-induced shrinkage of highly crystalline SiC fibers, Acta Mater, 83, 1, 10.1016/j.actamat.2014.07.057

Katoh, 2004, SiC/SiC composites through transient eutectic-phase route for fusion applications, J. Nucl. Mater., 329–333, 587, 10.1016/j.jnucmat.2004.04.157

Naslain, 2004, Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Compos. Sci. Technol, 64, 155, 10.1016/S0266-3538(03)00230-6

Katoh, 2002, Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process, Fusion Eng. Des., 61–62, 723, 10.1016/S0920-3796(02)00180-1

Hillig, 1988, Melt infiltration approach to ceramic matrix composites, J. Am. Ceram. Soc., 71, 10.1111/j.1151-2916.1988.tb05840.x

Suyama, 2003, Development of high-strength reaction-sintered silicon carbide, Diam. Relat. Mater, 12, 1201, 10.1016/S0925-9635(03)00066-9

Kohyama, 2000, High-performance SiC/SiC composites by improved PIP processing with new precursor polymers, J. Nucl. Mater, 283, 565, 10.1016/S0022-3115(00)00270-1

Snead, 2007, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater, 371, 329, 10.1016/j.jnucmat.2007.05.016

Opila, 1997, Paralinear oxidation of CVD SiC in water vapor, J. Am. Ceram. Soc., 80, 197, 10.1111/j.1151-2916.1997.tb02810.x

Hironaka, 2002, High-temperature tensile strength of near-stoichiometric SiC/SiC composites, J. Nucl. Mater., 307–311, 1093, 10.1016/S0022-3115(02)01049-8

Shimoda, 2011, Enchanced high-temperature performances of SiC/SiC composites by high densification and crystalline structure, Compos. Sci. Technol, 71, 326, 10.1016/j.compscitech.2010.11.026

Sauder, 2014, Ceramic matrix composites: nuclear applications, Ceram. Matrix Compos. Mater. Model. Technol, 609

Snead, 1993, Development of silicon carbide composites for fusion, Fusion Technol, 24, 65, 10.13182/FST93-A30175

Katoh, 2007, Current status and critical issues for development of SiC composites for fusion applications, J. Nucl. Mater., 367–370, 659, 10.1016/j.jnucmat.2007.03.032

Katoh, 2012, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci., 16, 143, 10.1016/j.cossms.2012.03.005

Feinroth, 2002

Feinroth, 2005, A multi-layered ceramic composite for impermeable fuel cladding for commercial water reactors, Gamma Eng. Rep.

Yueh, 2010, Clad in clay, Nucl. Eng. Int, 55, 14

Deck, 2015, Characterization of SiC–SiC composites for accident tolerant fuel cladding, J. Nucl. Mater, 466, 667, 10.1016/j.jnucmat.2015.08.020

Feinroth, 2008

Lorrette, 2011, Progress in developing SiCf/SiC composite materials for advanced nuclear reactors

Kim, 2015, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater, 458, 29, 10.1016/j.jnucmat.2014.11.117

Kitano, 2013, Development of innovative material for nuclear reactor core with enhanced safety

Katoh, 2011, Stability of SiC and its composites at high neutron fluence, J. Nucl. Mater, 417, 400, 10.1016/j.jnucmat.2010.12.088

Besmann, 1991, Vapor-phase fabrication and properties of continuous-filament ceramic composites, Science, 80, 1104, 10.1126/science.253.5024.1104

Naofiimi Nakazato, 2014, SiC/SiC Fuel Cladding by NITE process for Innovative LWR-Cladding forming process development, Ceram. Environ. Energy Appl. II Ceram. Trans., 246, 109

Fitriani, 2017, Fabrication of tubular SiC f/SiC using different preform architectures by electrophoretic deposition and hot pressing, Ceram. Int, 43, 7618, 10.1016/j.ceramint.2017.03.056

Dong, 2003, Preparation of SiC/SiC Composites by hot pressing, using tyranno-SA fiber as reinforcement, J. Am. Ceram. Soc., 86, 26, 10.1111/j.1151-2916.2003.tb03272.x

Shimoda, 2009, Development of the tailored SiC/SiC composites by the combined fabrication process of ICVI and NITE methods, J. Nucl. Mater, 384, 103, 10.1016/j.jnucmat.2008.10.025

Rohmer, 2014, Mechanical properties of SiC/SiC braided tubes for fuel cladding, J. Nucl. Mater, 453, 16, 10.1016/j.jnucmat.2014.06.035

Jacobsen, 2014, Investigation of the C-ring test for measuring hoop tensile strength of nuclear grade ceramic composites, J. Nucl. Mater, 452, 125, 10.1016/j.jnucmat.2014.05.002

Katoh, 2014, Radiation-tolerant joining technologies for silicon carbide ceramics and composites, J. Nucl. Mater, 448, 497, 10.1016/j.jnucmat.2013.10.002

Katoh, 2010, Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J. Nucl. Mater, 403, 48, 10.1016/j.jnucmat.2010.06.002

Koyanagi, 2014, Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process, J. Nucl. Mater, 448, 478, 10.1016/j.jnucmat.2013.10.005

Shapovalov, 2018, Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading, J. Nucl. Mater., 500, 280, 10.1016/j.jnucmat.2018.01.001

Singh, 2017

Khalifa, 2015, Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications, J. Nucl. Mater, 457, 227, 10.1016/j.jnucmat.2014.11.071

Koyanagi, 2017, Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature, J. Nucl. Mater, 488, 150, 10.1016/j.jnucmat.2017.03.017

Katoh, 2015, High-dose neutron irradiation of Hi-nicalon type s silicon carbide composites. Part 2: mechanical and physical properties, J. Nucl. Mater, 462, 450, 10.1016/j.jnucmat.2014.12.121

Koyanagi, 2017, Mechanical properties of SiC composites neutron irradiated under light water reactor relevant temperature and dose conditions, J. Nucl. Mater, 494, 46, 10.1016/j.jnucmat.2017.07.007

Silva, 2015, Chemical reactivity of CVC and CVD SiC with UO 2 at high temperatures, J. Nucl. Mater, 460, 52, 10.1016/j.jnucmat.2015.02.002

Braun, 2017, Chemical compatibility between UO 2 fuel and SiC cladding for LWRs. Application to ATF ( accident-tolerant fuels ), J. Nucl. Mater, 487, 380, 10.1016/j.jnucmat.2017.02.031

Lee, 2013, Safety assessment of SiC cladding oxidation under loss-of-coolant accident conditions in light water reactors, Nucl. Technol, 183, 210, 10.13182/NT12-122

Avincola, 2015, Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application, Nucl. Eng. Des., 295, 468, 10.1016/j.nucengdes.2015.10.002

Hayasaka, 2016, Resistance of SiC/SiC composites by NITE-method, Adv. Refract. Ceram. Energy Conserv. Effic. Ceram. Trans., 256, 29, 10.1002/9781119234593.ch4

Yueh, 2014, Silicon carbide composite for light water reactor fuel assembly applications, J. Nucl. Mater, 448, 380, 10.1016/j.jnucmat.2013.12.004

Terrani, 2015

Kim, 2013, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol, 45, 565, 10.5516/NET.07.2012.084

Katoh, 2015, Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures, ORNL/TM-2015/454

Hirayama, 1989, Corrosion behavior of silicon carbide in 290 C water, J. Am. Ceram. Soc., 72, 2049, 10.1111/j.1151-2916.1989.tb06029.x

Kim, 2003, Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at 360 C, J. Mater. Sci. Lett., 22, 581, 10.1023/A:1023390111074

Henager, 2008, Pitting corrosion in CVD SiC at 300° C in deoxygenated high-purity water, J. Nucl. Mater, 378, 9, 10.1016/j.jnucmat.2008.03.025

Jacobson, 1995, Thermodynamic and experimental study of carbon formation on carbides under hydrothermal conditions, J. Mater. Chem., 5, 595, 10.1039/jm9950500595

Terrani, 2015, Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation, J. Nucl. Mater, 465, 488, 10.1016/j.jnucmat.2015.06.019

Tester, 1994, Correlating quartz dissolution kinetics in pure water from 25 to 625 C, Geochim. Cosmochim. Acta, 58, 2407, 10.1016/0016-7037(94)90020-5

Icenhower, 2000, The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength, Geochim. Cosmochim. Acta, 64, 4193, 10.1016/S0016-7037(00)00487-7

Fournier, 1977, Solubility of amorphous silica in water at high temperatures and high pressure, Am. Miner, 62, 1052

Kim, 2015, Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized waterreactor environment, Corros. Sci., 98, 304, 10.1016/j.corsci.2015.05.031

Scott, 2006, Corrosion in pressurized water reactors, ASM Handb, 13, 362

Ford, 2006, Corrosion in boiling water reactors, ASM Handb, 13, 341

Koyanagi, 2016, Hydrothermal corrosion of silicon carbide joints without radiation, J. Nucl. Mater, 481, 226, 10.1016/j.jnucmat.2016.09.027

Parish, 2017, Microstructure and hydrothermal corrosion behavior of NITE-SiC with various sintering additives in LWR coolant environments, J. Eur. Ceram. Soc., 37, 1261, 10.1016/j.jeurceramsoc.2016.11.033

Spinks, 1990

Kondo, 2015, Effect of irradiation damage on hydrothermal corrosion of SiC, J. Nucl. Mater, 464, 36, 10.1016/j.jnucmat.2015.04.034

Pantano, 2016

Macdonald, 1992, Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors, Corrosion, 48, 194, 10.5006/1.3315925

Kondo, 2016, Role of irradiation-induced defects on SiC dissolution in hot water, Corros. Sci., 112, 402, 10.1016/j.corsci.2016.08.007

Park, 2013, Long-term corrosion behavior of CVD SiC in 360°C water and 400°C steam, J. Nucl. Mater, 443, 603, 10.1016/j.jnucmat.2013.07.058

Stempien, 2013, Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions, Nucl. Technol, 183, 13, 10.13182/NT12-86

Kohyama, 2016, 302

Katoh, 2017

Ang, 2016, Chromium-based mitigation coatings on sic materials for fuel cladding, Trans. Am. Nucl. Soc., 114, 1095

Ang, 2016

Ishibashi, 2017, Improving the corrosion resistance of silicon carbide for fuel in bwr environments by using a metal coating

Ang, 2017

Alva, 2015, High pressure burst testing of SiCf-SiCm composite nuclear fuel cladding, vol. 3, 387

Nozawa, 2013, Re-defining failure envelopes for silicon carbide composites based on damage process analysis by acoustic emission, Fusion Eng. Des, 88, 2543, 10.1016/j.fusengdes.2013.05.054

Ben-Belgacem, 2014, Thermo-mechanical analysis of LWR SiC/SiC composite cladding, J. Nucl. Mater, 447, 125, 10.1016/j.jnucmat.2014.01.006

Lee, 2015, A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel, J. Nucl. Mater, 458, 87, 10.1016/j.jnucmat.2014.12.013

Stone, 2015, Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding, J. Nucl. Mater, 466, 682, 10.1016/j.jnucmat.2015.08.001

Avincola, 2016, Mechanical performance of SiC three-layer cladding in PWRs, Nucl. Eng. Des, 310, 280, 10.1016/j.nucengdes.2016.10.008

Singh, 2018, Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis, J. Nucl. Mater., 499, 126, 10.1016/j.jnucmat.2017.11.004

Carpenter, 2010

2011

Morley, 2008, Recent research and development for the dual-coolant blanket concept in the US, Fusion Eng. Des, 83, 920, 10.1016/j.fusengdes.2008.04.012

Cozzo, 2017, SiC cladding behavior: experiments and modelling at PSI, Water React. Fuel Perform. Meet

Singh, 2018, Parametric evaluation of SiC/SiC composite cladding with UO2 Fuel for LWR applications: fuel rod interactions and impact of nonuniform power profile in fuel rod, J. Nucl. Mater., 499, 155, 10.1016/j.jnucmat.2017.10.059

Petrie, 2017, Experimental design and analysis for irradiation of SiC/SiC composite tubes under a prototypic high heat fl ux *, J. Nucl. Mater, 491, 94, 10.1016/j.jnucmat.2017.04.058

Singh, 2018, Evaluating the irradiation effects on the elastic properties of miniature monolithic SiC tubular specimens, J. Nucl. Mater., 499, 107, 10.1016/j.jnucmat.2017.10.060

Hu, 2017

Singh, 2017, Interlaboratory round robin study on axial tensile properties of tubular SiC/SiC specimens, Int. J. Appl. Ceram. Technol.

M.G. Jenkins, S.T. Gonczy, Y. Katoh, Composition, structure, manufacture, and properties of SiC-Sic CMCS for nuclear applications: informational chapters in the asme BPV code section III, Ceram. Mater. Energy Appl. VI Ceram. Eng. Sci. Proc. Vol. 37, Issue 6. (n.d.) 17–22.

Feinroth, 2009, Mechanical strength of CTP Triplex SiC fuel clad tubes after irradiation in MIT research reactor under PWR coolant conditions, 47, 10.1002/9780470584002.ch4

Zabiego, 2013, Overview of CEA's R&D on GFR fuel element design: from challenges to solutions

Opila, 1999, SiC recession caused by SiO2 scale volatility under combustion conditions : II, thermodynamics and gaseous-diffusion model, J. Am. Ceram. Soc., 82, 1826, 10.1111/j.1151-2916.1999.tb02005.x

Opila, 2003, Oxidation and volatilization of silica formers in water vapor, J. Am. Ceram. Soc., 86, 1238, 10.1111/j.1151-2916.2003.tb03459.x

More, 2000, Observations of Accelerated silicon carbide recession by oxidation at high water-vapor pressures, J. Am. Ceram. Soc., 83, 211, 10.1111/j.1151-2916.2000.tb01172.x

More, 2003, High-temperature stability of SiC-based composites in high-water-vapor-pressure environments, J. Am. Ceram. Soc., 86, 1272, 10.1111/j.1151-2916.2003.tb03463.x

Mouche, 2018, High-temperature high-pressure steam oxidation of SiC

Petti, 2017, A summary of the department of energy's advanced demonstration and test reactor options study, Nucl. Technol, 199, 111, 10.1080/00295450.2017.1336029

Geelhood, 2008

Hobbins, 1977, Zircaloy cladding behavior during irradiation tests under power-cooling-mismatch conditions

McGrath, 2002, The effect of short-term dry-out transients on the cladding properties of fresh and pre-irradiated fuel rods

2017

Olander, 1999, Steam oxidation of fuel in defective LWR rods, J. Nucl. Mater, 270, 11, 10.1016/S0022-3115(98)00759-4

Higgs, 2007, A conceptual model for the fuel oxidation of defective fuel, J. Nucl. Mater, 366, 99, 10.1016/j.jnucmat.2006.12.050

Olander, 1996, Materials chemistry and transport modeling for severe accident analyses in light-water reactors III. fuel dissolution by molten cladding, Nucl. Eng. Des, 162, 257, 10.1016/0029-5493(95)01130-7

Wood, 2017, Oxidation behavior of U-Si compounds in air from 25 to 1000 C, J. Nucl. Mater, 484, 245, 10.1016/j.jnucmat.2016.12.016

Johnson, 2017, Oxidation of accident tolerant fuel candidates, J. Nucl. Sci. Technol, 54, 280

Lopes, 2017, Degradation of UN and UN–U3Si2 pellets in steam environment, J. Nucl. Sci. Technol, 54, 405, 10.1080/00223131.2016.1274689

2017

2017

Hess, 2017, Assessing the business case for accident tolerant fuel

Shirvan, 2017, Risk implication of using accident tolerant fuels in LWRs

Zinkle, 2016, Motivation for utilizing new high-performance advanced materials in nuclear energy systems, Curr. Opin. Solid State Mater. Sci., 20, 401, 10.1016/j.cossms.2016.10.004

Crawford, 2007, An approach to fuel development and qualification, J. Nucl. Mater, 371, 232, 10.1016/j.jnucmat.2007.05.029

Szőke, 2017, Dimensional behaviour testing of accident tolerant fuel (ATF) in the halden reactor

Farmer, 2016, Reactor Safety gap evaluation of accident-tolerant components and severe accident analysis, Nucl. Sci. Eng, 184, 293, 10.13182/NSE16-13