Accessing inoculation methods of maize and wheat with Azospirillum brasilense
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baldani VLD, Baldani JI, Olivares FL, Döbereiner J. Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisalbicans. Symbiosis. 1992;13:65–73.
Baldotto LEB, Olivares FL, Bressan-Smith R. Structural interaction between gfp-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae ram10 and pineapple plantlets ‘Vitória’. Braz J Microbiol. 2011;42:114–25.
Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas WM, Pereyra MA. Potencialidad de Azospirillum en optimizar el crecimiento vegetal bajo condiciones adversas. In: Cassán FD, Garcia de Salamone I, editor. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, Buenos Aires. 2008. pp 49–59.
Bashan Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol Biochem. 1986;18:297–301.
Bashan Y. Azospirillum plant growth-promoting strains are nonpathogenic on tomato, pepper, cotton, and wheat. Can J Microbiol. 1998;44:168–74.
Bashan Y, Bustillos JJ, Leyva LA, Hernadez J-P, Bacilio M. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils. 2006;42:279–85.
Bashan Y, de-Bashan LE. Plant growth-promoting. In: Hillel D, editor. Encyclopedia of soils in the environment. Oxford: Elsevier; 2005. p. 103–15.
Bashan Y, de-Bashan LE. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron. 2010;108:77–136.
Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: formulation and practical perspectives (1998–2013). Plant Soil. 2014;378:1–33.
Bashan Y, Holguin G. Azospirillum-plant relationship: environmental and physiological advances (1990–1996). Can J Microbiol. 1997;43:103–21.
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural and environmental advances. Can J Microbiol. 2004;50:521–77.
Bhattacharyya PN, Jha DK. Plant growth-promoting bacteria (PGPB): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.
Bottini R, Fulchieri M, Pearce D, Pharis R. Identification of gibberelins A1, A3, and iso-A3 in cultures of A. lipoferum. Plant Physiol. 1989;90:45–7.
Campo RJ, Araujo RS, Hungria M. Nitrogen fixation with the soybean crop in Brazil: compatibility between sedd treatment with fungicides and bradyrhizobial inoculants. Symbiosis. 2009;48:154–63.
Cohen E, Okon Y, Kigel J, Nur I, Henis Y. Increase in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogen-fixing Azospirillum spp. Plant Physiol. 1980;66:746–9.
de-Bashan LE, Hernandez J-P, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol. 2012;61:171–89.
Díaz-Zorita M, Fernández-Canigia MV. Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat production. Eur J Soil Biol. 2009;45:3–11.
Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Okon Y, Vanderleyden J. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol Fertil Soils. 2002;36:284–97.
Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y. Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol. 2001;28:871–9.
Dobbelaere S, Vanderleyden J, Okon Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci. 2003;22:107–49.
Döbereiner J, Baldani VLD, Baldani JI. Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Itaguaí: Embrapa-SPI; 1995.
Elslahi RH, Osman AG, Sherif AM, Elhussein AA. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and fungi in pure cultures. Interdiscip Toxicol. 2014;7:12–6.
Embrapa. Sistema brasileiro de classificação de solos. Rio de Janeiro: Embrapa-SPI; 2006.
Fallik E, Okon Y, Fischer M. Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem. 1988;20:45–9.
Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH. Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol. 2013;72:103–8.
Hartmann A. Ecophysiological aspects of growth and nitrogen fixation in Azospirillum spp. Plant Soil. 1989;110:225–38.
Hickman JS, Shroyer JP. Corn production handbook. Manhattan: Publication C; 1994.
Hungria M, Araujo RS. Manual de métodos empregados em estudos de microbiologia agrícola. EMBRAPA-SPI, Brasília, Brazil. 1994. pp. 542 (ISSN 0101-9716).
Hungria M, Campo RJ, Mendes IC, Graham PH. Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK, editors. Nitrogen nutrition and sustainable plant productivity. Houston: Studium Press, LLC; 2006. p. 43–93.
Hungria M, Campo RJ, Souza EM, Pedrosa FO. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil. 2010;331:413–25.
Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH. Inoculant preparation, production and application. In: Werner W, Newton WE, editors. Nitrogen fixation in agriculture, forestry, ecology and the environment. Dordrecht: Springer; 2005. p. 223–54.
Hungria M, Nogueira MA, Araujo RS. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils. 2013;49:791–801.
Hungria M, Nogueira MA, Araujo RS. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci. 2015;6:811–7.
James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J. Infection of sugar cane by the nitrogen fixing bacterium Acetobacter diazotrophicus. J Exp Bot. 1994;45:757–66.
Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW. Differences in photosynthetic behavior and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biol. 2009;12:60–9.
Klute A, editor. Methods of soil analysis, part 1, physical and mineralogical methods. 2nd ed. WI: American Society of Agronomy, Madison; 1986.
Kouchebagh SB, Mirshekari B, Farahvash F. Improvement of corn yield by seed biofertilization and urea application. World Appl Sci J. 2012;16:1239–42.
Large EC. Growth stages in cereals illustration of the Feeks scales. Plant Pathol. 1954;4:22–4.
Marks BB, Megías M, Nogueira MA, Hungria M. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and A. brasilense inoculants with soybean and maize. ABM Express. 2013;3:1–10.
Mohiuddin M, Mohammed MK. Influence of fungicide (Carbendazim) and herbicides (2,4-D and Metribuzin) on non-target beneficial soil microorganisms of Rhizospheric Soil of Tomato Crop. IOSR J Environ Sci Toxicol Food Technol. 2013;5:47–50.
Mostajeran A, Amooaghaie R, Emtiazi G. The participation of the cell wall hydrolytic enzymes in the initial colonization of Azospirillum brasilense on wheat roots. Plant Soil. 2007;291:239–48.
Moutia JFY, Saumtally S, Spaepen S, Vanderleyden J. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil. 2010;337:233–42.
Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, Rothballer M, Schmid M, Hartmann A. Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul. 2010;29:6–22.
Okon Y, Labandera-Gonzalez C. Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem. 1994;26:1591–601.
Patriquin DG, Döbereiner J, Jain DX. Sites and processes of association between diazotrophs and grasses. Can J Microbiol. 1983;29:900–15.
Pereyra CM, Ramella NA, Pereyra MA, Barassi CA, Creus CM. Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. Plant Physiol Biochem. 2010;48:62–9.
Piccinin GG, Braccini AL, Dan LGM, Scapim CA, Ricci TT, Bazo GL. Efficiency of seed inoculation with Azospirillum brasilense on agronomic characteristics and yield of wheat. Ind Crop Prod. 2013;43:393–7.
Piccinin GG, Dan LGM, Braccini AL, Mariano DC, Okumura RS, Bazo GL, Ricci TTE. Agronomic efficiency of Azospirillum brasileinse in physiological parameters and yield components in wheat crop. J Agron. 2011;10:132–5.
Puente ML, Garcia JE, Perticari A. Investigación aplicada de Azospirillum para su uso como promotor del crecimento em cultivos de interes agronômico. In: Cassán FD, Garcia de Salamone L, editor. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Argentina: Asociación Argentina de Microbiologia, Buenos Aires. 1994. pp. 167–178.
Rodriguez H, Gonzalez T, Goire I, Bashan Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften. 2004;91:552–5.
Romero AM, Correa OS, Moccia S, Rivas JG. Effect of Azospirillum mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol. 2003;95:832–8.
Rothballer M, Schmid M, Hartmann A. In situ localization and PGPB effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis. 2003;34:261–79.
Salantur A, Ozturk R, Akten S. Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ. 2006;52:111–8.
Saubidet MI, Fatta N, Barneix AJ. The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil. 2002;245:215–22.
SAS Institute (2001) Proprietary of software, version 8.2, 6th edn. SAS, Cary, USA.
Searle PL. The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst. 1984;109:549–68.
Souza AO, Pamphile JA, Rocha CLMSC, Azevedo JL. Plant-microbe interactions between maize (Zea mays L.) and endophytic microorganisms observed by scanning electron microscopy. Acta Sci Biol Sci. 2004;26:357–9.
Sparks DL, editor. Methods of soil analysis, part 3, chemical method. Madison: American Society of Agronomy; 1996.
Stancheva I, Dimitrov I, Kaloyanova N, Dimitrova A, Angelov M. Effect of inoculation with Azospirillum brasilense on photosynthetic enzyme activities and grain yield in maize. Agronomie. 1992;12:319–24.
Swedrzyńska D, Sawicka A. Effect of Inoculation on population numbers of Azospirillum bacteria under winter wheat, oat and maize. Pol J Environ Stud. 2001;10:21–5.
Tien TM, Gaskins MH, Hubbell DH. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol. 1979;37:1016–24.
Tortora M, Diaz-Ricci JC, Pedraza R. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol. 2011;193:275–86.
Trani PE, Hiroce R, Bataglia OC. Análise foliar: amostragem e interpretação. Campinas: Fundação Cargill; 1983.
Venieraki A, Dimou M, Pergalis P, Kefalogianni I, Chatzipavlidis I, Katinakis P. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol. 2011;61:277–85.
Werner T, Motyka V, Laucou V, Smets R, Onckelen HV, Schmulling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15:2532–50.