Access and in situ growth of phosphorene-precursor black phosphorus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 103106, 10.1063/1.4868132
Castellanos-Gomez, 2014, Isolation and characterization of few-layer black phosphorus, 2D Mater., 1, 025001, 10.1088/2053-1583/1/2/025001
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Lu, 2014, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization, Nano Res.
Ezawa, 2014, Electrically tunable quasi-flat bands, conductance and field effect transistor in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–6
Lv, 2014, Large thermoelectric power factor in black phosphorus and phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1-17
Fei, 2014, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1-22
Shao, 2014, Electron-doped phosphorene: a potential monolayer superconductor, arXiv.org, e-Print Arch., Condens. Matter, 1-5
Low, 2014, Tunable optical properties of multilayers black phosphorus, arXiv.org, e-Print Arch., Condens. Matter, 1-5
Maity, 2014, instability and edge reconstruction in phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1-7
Wei, 2014, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Applied Phys. Lett., 104, 10.1063/1.4885215
Fei, 2014, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett., 14, 2884, 10.1021/nl500935z
Tran, 2014, Layer-controlled band gap and anisotropic excitons in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–5
Tran, 2014, Unusual scaling laws of the band gap and optical absorption of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–18
Wu, 2014, Giant Stark effect on band gaps of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–5
Guo, 2014, Phosphorene nanoribbons, nanotubes and van der Waals multilayers, arXiv.org, e-Print Arch., Condens. Matter, 1–19
Peng, 2014, Strain engineered direct-indirect band gap transition and its mechanism in 2D phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–20
Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, arXiv.org, e-Print Arch., Condens. Matter, 1–16
Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, arXiv.org, e-Print Arch., J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m
Xia, 2014, Rediscovering black phosphorus: A unique anisotropic 2d material for optoelectronics and electronics, arXiv.org, e-Print Arch., Condens. Matter, 1
Qiao, 2014, Few-layer black phosphorus: emerging 2D semiconductor with high anisotropic carrier mobility and linear dichroism, arXiv.org, e-Print Arch., Condens. Matter, 1
Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085
Bridgman, 1914, Two new modifications of phosphorus, J. Am. Chem. Soc., 36, 1344, 10.1021/ja02184a002
Maruyama, 1981, Synthesis and some properties of black phosphorus single crystals, Physica B+C, 105, 99, 10.1016/0378-4363(81)90223-0
Krebs, 1955, The structure and properties of semimetals. VIII. The catalytic preparation of black phosphorus, Z. Anorg. Allg. Chem., 280, 119, 10.1002/zaac.19552800110
Lucent Technologies Inc. Method of making black phosphorus from red phosphorus, in: James Nelson Baillargeon, Keh-Yeng Cheng, Alfred Yi Cho, Sung-Nee George Chu, Wen-Yen Hwang, (Eds.). US Appl. No.: 09/270,883. Family ID: 23033240.
F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner and R. Weihrich, Die erweiterte Stabilitätsreihe der Phosphor-Allotrope, 10.1002/ange.201404147R2; Angew. Chem. Int. Ed. Eng., 10.1002/anie.201404147R2, in press
Lange, 2007, Au3SnP7@Black Phosphorus: an easy access to black phosphorus, Inorg. Chem., 46, 4028, 10.1021/ic062192q
Peng, 2014, Chemical scissors cut phosphorene nanostructures and their novel electronic properties, arXiv.org, e-Print Arch., Condens. Matter, 1–14
Carvalho, 2014, Phosphorene Nanoribbons, 1
Peng, 2014, Edge effects on the electronic properties of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–13
Xie, 2014, A theoretical study of blue phosphorene nanoribbons based on first-principles calculations, arXiv.org, e-Print Arch., Condens. Matter, 1–5
Zhang, 2014, Phosphorene nanoribbon as a promising candidate for thermoelectric applications, arXiv.org, e-Print Arch., Condens. Matter, 1–17
Nilges, 2008, A low pressure transport route to large black phosphorus crystals, J. Solid State Chem., 181, 1707, 10.1016/j.jssc.2008.03.008
Pienack, 2011, In-situ-Verfolgung der Bildung kristalliner Feststoffe, Angew. Chem., 123, 2062, 10.1002/ange.201001180
Palmer, 1970
Hansen, 2008, The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer, Meas. Sci. Technol., 19, 034001, 10.1088/0957-0233/19/3/034001