Access and in situ growth of phosphorene-precursor black phosphorus

Journal of Crystal Growth - Tập 405 - Trang 6-10 - 2014
Marianne Köpf1, Nadine Eckstein1, Daniela Pfister1, Carolin Grotz1, Ilona Krüger1, Magnus Greiwe1, Thomas C. Hansen2, Holger Kohlmann3, Tom Nilges1
1Technische Universität München, Department of Chemistry, Lichtenbergstrasse, 485748 Garching b. München, Germany
2Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
3Universität Leipzig, Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Johannisallee 29, 04103 Leipzig, Germany.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Reich, 2014, Phosphorene excites materials scientists, Nature, 506, 19, 10.1038/506019a

Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35

Koenig, 2014, Electric field effect in ultrathin black phosphorus, Appl. Phys. Lett., 104, 103106, 10.1063/1.4868132

Castellanos-Gomez, 2014, Isolation and characterization of few-layer black phosphorus, 2D Mater., 1, 025001, 10.1088/2053-1583/1/2/025001

Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z

Lu, 2014, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization, Nano Res.

Lu, 2014, Condens. Matter, 1, 10.1016/j.cocom.2014.08.001

Ezawa, 2014, Electrically tunable quasi-flat bands, conductance and field effect transistor in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–6

Lv, 2014, Large thermoelectric power factor in black phosphorus and phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1-17

Fei, 2014, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1-22

Shao, 2014, Electron-doped phosphorene: a potential monolayer superconductor, arXiv.org, e-Print Arch., Condens. Matter, 1-5

Low, 2014, Tunable optical properties of multilayers black phosphorus, arXiv.org, e-Print Arch., Condens. Matter, 1-5

Maity, 2014, instability and edge reconstruction in phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1-7

Wei, 2014, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Applied Phys. Lett., 104, 10.1063/1.4885215

Fei, 2014, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus, Nano Lett., 14, 2884, 10.1021/nl500935z

Tran, 2014, Layer-controlled band gap and anisotropic excitons in phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–5

Tran, 2014, Unusual scaling laws of the band gap and optical absorption of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–18

Wu, 2014, Giant Stark effect on band gaps of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–5

Guo, 2014, Phosphorene nanoribbons, nanotubes and van der Waals multilayers, arXiv.org, e-Print Arch., Condens. Matter, 1–19

Peng, 2014, Strain engineered direct-indirect band gap transition and its mechanism in 2D phosphorene, arXiv.org, e-Print Arch., Condens. Matter, 1–20

Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, arXiv.org, e-Print Arch., Condens. Matter, 1–16

Dai, 2014, Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells, arXiv.org, e-Print Arch., J. Phys. Chem. Lett., 5, 1289, 10.1021/jz500409m

Xia, 2014, Rediscovering black phosphorus: A unique anisotropic 2d material for optoelectronics and electronics, arXiv.org, e-Print Arch., Condens. Matter, 1

Qiao, 2014, Few-layer black phosphorus: emerging 2D semiconductor with high anisotropic carrier mobility and linear dichroism, arXiv.org, e-Print Arch., Condens. Matter, 1

Buscema, 2014, Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors, Nano Lett., 14, 3347, 10.1021/nl5008085

Bridgman, 1914, Two new modifications of phosphorus, J. Am. Chem. Soc., 36, 1344, 10.1021/ja02184a002

Maruyama, 1981, Synthesis and some properties of black phosphorus single crystals, Physica B+C, 105, 99, 10.1016/0378-4363(81)90223-0

Krebs, 1955, The structure and properties of semimetals. VIII. The catalytic preparation of black phosphorus, Z. Anorg. Allg. Chem., 280, 119, 10.1002/zaac.19552800110

Lucent Technologies Inc. Method of making black phosphorus from red phosphorus, in: James Nelson Baillargeon, Keh-Yeng Cheng, Alfred Yi Cho, Sung-Nee George Chu, Wen-Yen Hwang, (Eds.). US Appl. No.: 09/270,883. Family ID: 23033240.

F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner and R. Weihrich, Die erweiterte Stabilitätsreihe der Phosphor-Allotrope, 10.1002/ange.201404147R2; Angew. Chem. Int. Ed. Eng., 10.1002/anie.201404147R2, in press

Ruck, 2005, Angew. Chem., 117, 7788, 10.1002/ange.200503017

Ruck, 2005, Angew. Chem. Int. Ed. Engl., 44, 7616, 10.1002/anie.200503017

Eckstein, 2013, Z. Anorg. Allg. Chem., 639, 2741, 10.1002/zaac.201300327

Lange, 2007, Au3SnP7@Black Phosphorus: an easy access to black phosphorus, Inorg. Chem., 46, 4028, 10.1021/ic062192q

Peng, 2014, Chemical scissors cut phosphorene nanostructures and their novel electronic properties, arXiv.org, e-Print Arch., Condens. Matter, 1–14

Carvalho, 2014, Phosphorene Nanoribbons, 1

Peng, 2014, Edge effects on the electronic properties of phosphorene nanoribbons, arXiv.org, e-Print Arch., Condens. Matter, 1–13

Xie, 2014, A theoretical study of blue phosphorene nanoribbons based on first-principles calculations, arXiv.org, e-Print Arch., Condens. Matter, 1–5

Zhang, 2014, Phosphorene nanoribbon as a promising candidate for thermoelectric applications, arXiv.org, e-Print Arch., Condens. Matter, 1–17

Binnewies, 2012, 10.1515/9783110254655

Nilges, 2008, A low pressure transport route to large black phosphorus crystals, J. Solid State Chem., 181, 1707, 10.1016/j.jssc.2008.03.008

Pienack, 2011, In-situ-Verfolgung der Bildung kristalliner Feststoffe, Angew. Chem., 123, 2062, 10.1002/ange.201001180

Pienack, 2011, Angew. Chem. Int. Ed., 50, 2014, 10.1002/anie.201001180

Palmer, 1970

Hansen, 2008, The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer, Meas. Sci. Technol., 19, 034001, 10.1088/0957-0233/19/3/034001

Petricek, 2014, Z. Kristallogr., 229, 345, 10.1515/zkri-2014-1737

Sugai, 1981, J. Phys. Soc. Jpn., 50, 3356, 10.1143/JPSJ.50.3356

Vanderborgh, 1989, Phys. Rev. B, 40, 9595, 10.1103/PhysRevB.40.9595