Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO3
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bala, R., Kalia, A., & Dhaliwal, S. S. (2019). Evaluation of efficacy of ZnO nanoparticles as remedial zinc nano-fertilizer for rice. Journal of Soil Science and Plant Nutrition, 19(2), 379–389.
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist,173(4), 677–702.
da Silva, B. F., Pérez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A., & Barceló, D. (2011). Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry,30(3), 528–540.
De Rosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology,5(2), 91.
Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., & Gardea, J. L. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment,688, 926–934.
Dolatabadian, A., Sanavy, S. A. M. M., Gholamhoseini, M., Joghan, A. K., Majdi, M., & Kashkooli, A. B. (2013). The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiology and Molecular Biology of Plants,19(2), 189–198.
Dordas, C. (2009). Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare spp. hirtum). Industrial Crops and Products,29(2–3), 599–608.
Endres, L., da Cruz, S. J. S., Vilela, R. D., dos Santos, J. M., de Souza Barbosa, G. V., & Silva, J. A. C. (2016). Foliar applications of calcium reduce and delay sugarcane flowering. Bioenergy Research,9(1), 98–108.
Farahat, M. M., Ibrahim, M. S., Taha, L. S., & El-Quesni, E. F. (2007). Response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria. World Journal of Agricultural Sciences,3(4), 496–502.
Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. Current Protocols in Food Analytical Chemistry,1, F1–F2.
Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition—A review. American Journal of Experimental Agriculture,3(2), 374.
Halevy, A. H. (1984). Evaluation of lisianthus as a new flower crop. Hort Science,19, 845–847.
Harbaugh, B. K. (1995). Flowering of Eustoma grandiflorum cultivars influenced by photoperiod and temperature. Hort Science,30(7), 1375–1377.
Hashimoto, F., Nishimoto, S., Shimizu, K., & Sakata, Y. (2002). Flower growth, coloration and petal pigmentation in four lisianthus cultivars. Journal of the Japanese Society for Horticultural Science,71(1), 40–47.
Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell,17(8), 2142–2155.
Hernández-Pérez, A., Valdez-Aguilar, L. A., Villegas-Torres, O. G., Alía-Tejacal, I., Trejo-Téllez, L. I., & Sainz-Aispuro, M. D. J. (2016). Effects of ammonium and calcium on lisianthus growth. Horticulture, Environment, and Biotechnology,57(2), 123–131.
Hua, K. H., Wang, H. C., Chung, R. S., & Hsu, J. C. (2015). Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. Journal of Pesticide Science,40(4), 208–213.
Khalifa, R. K. H. M., Shaaban, S. H. A., & Rawia, A. (2011). Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean Journal of Applied Sciences,4(2), 129–144.
Kisan, B., Shruthi, H., Sharanagouda, H., Revanappa, S. B., & Pramod, N. K. (2015). Effect of nano-zinc oxide on the leaf physical and nutritional quality of spinach. Agrotechnology,4, 1–3.
Kumar, S., & Haripriya, K. (2010). Effect of foliar application of iron and zinc on growth flowering and yield of Nerium (Nerium odorum L.). Plant Archives,10(2), 637–640.
Kumar, R., Sharma, S., Kaundal, M., Sharma, S., & Thakur, M. (2016). Response of damask rose (Rosa damascena Mill.) to foliar application of magnesium (Mg), copper (Cu) and zinc (Zn) sulphate under western Himalayas. Industrial Crops and Products,83, 596–602.
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV–Vis spectroscopy. Current Protocols in Food Analytical Chemistry,1(1), F4-3.
Liu, X., Zhang, F., Zhang, S., He, X., Wang, R., Fei, Z., et al. (2005). Responses of peanut to nano-calcium carbonate. Plant Nutrition and Fertitizer Science,11(3), 385–389.
Marreiro, D., Cruz, K., Morais, J., Beserra, J., Severo, J., & de Oliveira, A. (2017). Zinc and oxidative stress: Current mechanisms. Antioxidants,6(2), 24.
Maurya, R., & Kumar, A. (2014). Effect of micronutrients on growth and corm yield of gladiolus. Plant Archives,14(1), 529–531.
Moreira, A., Moraes, L. A. C., & dos Reis, A. R. (2018). The molecular genetics of zinc uptake and utilization efficiency in crop plants. In M. A. Hossain, T. Kamiya, D. J. Burritt, L. S. Phan Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency (pp. 87–108). London, UK: Academic Press.
Ohkawa, K., Kano, A., Kanematsu, K., & Korenaga, M. (1991). Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Horticulturae,48(1–2), 171–176.
Pandey, N., Gupta, B., & Pathak, G. C. (2013). Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc. Scientia Horticulturae,164, 474–483.
Patle, P. N., Kadu, P. R., & Pharande, A. L. (2018). Nanotechnology: An emerging trend in soil science and plant nutrition research the review with an overarching approach. International Journal of Chemical Studies,6(3), 1758–1760.
Pavithra, G. J., Reddy, B. R., Salimath, M., Geetha, K. N., & Shankar, A. G. (2017). Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian Journal of Plant Physiology,22(3), 287–294.
Rebbeck, J., & Scherzer, A. J. (2002). Growth responses of yellow-poplar (Liriodendron tulipifera L.) exposed to 5 years of O3 aloneor combined with elevated CO2. Plant, Cell and Environment,25(11), 1527–1537.
Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., et al. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere,214, 269–277.
Rosrami Fard, S., Khourgami, A., Rafee, M., & Nasrollahi, H. (2012). Study the effect of zinc spraying and plant density on seed yield and morphological characteristics of Green gram. Annals of Biological Research,3(8), 4166–4171.
Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry,135, 160–166.
Saeed, T., Hassan, I., Jilani, G., & Abbasi, N. A. (2013). Zinc augments the growth and floral attributes of gladiolus, and alleviates oxidative stress in cut flowers. Scientia Horticulturae,164, 124–129.
Sarwar, M., Ayyub, C. M., Ahmad, W., Shafi, J., & Shafique, K. (2013). Modeling growth of cut-flower stock (Matthiola incana R. Br.) in response to differing in nutrient level. Universal Journal of Food and Nutrition Science,1(1), 4–10.
Savithramma, N. (2004). Influence of calcium supply on photosynthetic rate in relation to calmodulin in endemic and endangered tree saplings of Seshachalam hills of South Eastern Ghats of India. Journal of Plant Biology,31, 159–164.
Savithramma, N., Fareeda, G., Madhavi, V., & Murthy, S. D. S. (2007). Effect of Ca2+ on photochemical activities of green leafy vegetables. Journal of Plant Biology,34(2), 95.
Shaheen, R., Hassan, I., Hafiz, I. A., Jilani, G., & Abbasi, N. A. (2015). Balanced zinc nutrition enhances the antioxidative activities in oriental lily cut-flower leading to improved growth and vase quality. Scientia Horticulturae,197, 644–649.
Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2017). The role of calcium in plant signal transduction under macronutrient deficiency stress. In M. A. Hossain, T. Kamiya, D. J. Burritt, L. S. Phan Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency (pp. 181–196). London, UK: Academic Press.
Shehata, M., Azab, S. M., Fekry, A. M., & Ameer, M. A. (2016). Nano-TiO2 modified carbon paste sensor for electrochemical nicotine detection using anionic surfactant. Biosensors & Bioelectronics,79, 589–592.
Singh, A., Prasad, S. M., & Singh, S. (2018). Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology, Monitoring & Management,9, 42–49.
Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials,349, 101–110.
Tantawy, A. S., Salama, Y. A. M., Abdel-Mawgoud, M. R., & Ghoname, A. A. (2014). Comparison of chelated calcium with nano calcium on alleviation of salinity negative effects on tomato plants. Middle East Journal of Agriculture Research,3(4), 912–916.
Torre, S., Borochov, A., & Halevy, A. H. (1999). Calcium regulation of senescence in rose petals. Physiologia Plantarum,107(2), 214–219.
Ustun, N., Altunlu, H., Yokaş, I., & Saygili, H. (2007). Influence of potassium and calcium levels on severity of tomato pith necrosis and yield of greenhouse tomatoes. In: II International symposium on tomato diseases (vol. 808, pp. 347–350).
Vazin, F. (2012). Effect of zinc sulfate on quantitative and qualitative characteristics of corn (Zea mays) in drought stress. Cercetari Agronomice in Moldova,45(3), 15–24.
White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology,13(8), 627.
Yang, H., & Jie, Y. (2005). Uptake and transport of calcium in plants. Journal of Plant Physiology and Molecular Biology,31(3), 227.