Accelerating Optimizing the Design of Carbon‐based Electrocatalyst via Machine Learning

Electroanalysis - Tập 34 Số 4 - Trang 599-607 - 2022
Zhuochen Yu1, Weimin Huang1
1College of Chemistry, Jilin University, Changchun 130012, China

Tóm tắt

AbstractIn this era of artificial intelligence, we urgently want to optimize the current material design methods to come up with a more efficient and more accurate closed‐loop system. The approach requires at least three parts including high‐throughput screening, automated synthesis platform, and machine learning algorithms. Fortunately, the techniques mentioned above have been substantial developed. We have introduced the common algorithms of machine learning. Then, several machine learning‐based design of carbon‐based electrocatalysts are discussed. We tried to illustrate the research norms involving machine learning. Besides, other paper structures and details have been also discussed.

Từ khóa


Tài liệu tham khảo

10.1021/acs.chemrev.0c00594

10.1021/acs.chemrev.7b00542

10.1039/C9CS00159J

10.1039/D0CS00071J

10.1039/D0TA08446H

10.1039/D0TA12076F

10.1088/0034-4885/53/10/001

10.1016/0079-6816(91)90007-Q

10.1002/advs.201901614

10.1002/adma.201901989

10.1016/j.drudis.2018.01.039

10.1038/s41578-018-0005-z

10.1021/acs.chemrev.0c00004

10.1038/nature17439

10.1038/s41586-019-1798-7

10.1021/acs.jpclett.5b01660

10.1039/D0EE02838J

10.1038/nature24270

Xu J., 2021, Phys. Chem. Chem. Phys.

10.1021/acscatal.1c00178

10.1038/s41524-019-0196-x

10.1002/anie.201407031

10.1021/ja201269b

10.1002/anie.202006722

10.1002/ange.202006722

10.1149/1.1856988

10.1021/acs.chemrev.9b00248

Zhang Z., 2020, Mater. Today, 16

10.1039/C9CY02500F

10.1038/s41467-020-16554-5

Sun X., 2020, Appl. Surf. Sci., 526

10.1039/D0TA06583H

10.1002/adfm.202100547

10.1039/C9CS00906J

10.1002/elan.202060334

10.1039/C6CS00328A

10.1021/acssuschemeng.0c09192

10.1039/C9TA13404B

10.1080/21663831.2020.1815093

10.1002/anie.201803562

10.1080/14686996.2019.1707111

10.1039/D0CP00972E

10.1002/adma.201805367

10.1002/smtd.201800376

10.1039/C1CP22271F

10.1016/j.jechem.2020.12.012

10.1039/C9TA12608B

10.1039/D1TA00751C

10.1038/s41467-020-15235-7