Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phương trình Volterra trừu tượng trong các không gian lồi địa phương
Tóm tắt
Một lớp tổng quát của các họ C-resolvent (a, k)-chuẩn hóa là một trong những công cụ nghiên cứu hiệu quả để xử lý các phương trình Volterra trừu tượng không suy biến loại vô hướng. Mục đích chính của bài báo bình luận này là cung cấp một phân tích chi tiết về lớp trên trong các không gian lồi hoàn toàn tuần tự.
Từ khóa
Tài liệu tham khảo
Albanese AA, Kühnemund F. Trotter-Kato approximation theorems for locally equicontinuous semigroups. Riv Mat Univ Parma, 2002, 1: 19–53
Albanese A A, Mangino E. Trotter-Kato approximation theorems for bi-continuous semigroups and applications to Feller semigroups. J Math Anal Appl, 2004, 289: 477–492
Arendt W, Batty C J K, Hieber M, et al. Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Basel: Birkhäuser Verlag, 2 2001
Arendt W, El-Mennaoui O, Keyantuo V. Local integrated semigroups: evolution with jumps of regularity. J Math Anal Appl, 1994, 186: 572–595
Arendt W, Nikolski N. Vector-valued holomorphic functions revisited. Math Z, 2000, 234: 777–805
Barbu V. Differentiable distribution semi-groups. Ann Scuola Norm Sup Pisa Cl Sci, 1969, 23: 413–429
Barletta E, Dragomir S. Vector valued holomorphic functions. Bull Math Soc Sci Math Roumanie, 2009, 52: 211–226
Bazhlekova E. Fractional Evolution Equations in Banach Spaces. PhD dissertation. Eindhoven: Eindhoven University of Technology, 2001
Beals R. On the abstract Cauchy problem. J Funct Anal, 1972, 10: 281–299
Chill R, Keyantuo V, Warma M. Generation of cosine families on L p(0, 1) by elliptic operators with Robin boundary conditions. In: Functional Analysis and Evolution Equations. Basel: Birkhäuser Verlag, 2008, 113–130
Ciorănescu I, Lumer G. Problèmes d’évolution régularisés par un noyan général K(t). Form Formule de Duhamel, prolongements, théor`emes de génération. C R Acad Sci Paris Sér I Math, 1994, 319: 1273–1278
Ciorănescu I, Lumer G. Regularization of evolution equations via kernels K(t), K-evolution operators and convoluted semigroups, generation theorems. In: Seminar Notes in Functional Analysis and PDE. Baton Rouge: Louisiana State University, 1994, 45–52
Ciorănescu I. Beurling spaces of class (M p) and ultradistribution semi-groups. Bull Sci Math, 1978, 102: 167–192
Da Prato G, Sinestrari E. Differential operators with nondense domain. Ann Scuola Norm Sup Pisa Cl Sci, 1987, 14: 285–344
deLaubenfels R. Existence Families, Functional Calculi and Evolution Equations. In: Lecture Notes Math, vol. 1570. New York: Springer-Verlag, 1994
deLaubenfels R. Matrices of operators and regularized semigroups. Math Z, 1993, 212: 619–629
deLaubenfels R, Yao F, Wang S W. Fractional powers of operators of regularized type. J Math Anal Appl, 1996, 199: 910–933
Dembart B. On the theory of semigroups on locally convex spaces. J Funct Anal, 1974, 16: 123–160
Grosse-Erdmann K G. A weak criterion for weak holomorphy. Math Proc Camb Phil Soc, 2004, 136: 399–411
Hieber M, Holderrieth A, Neubrander F. Regularized semigroups and systems of linear partial differential equations. Ann Scuola Norm Sup Pisa, 1992, 19: 363–379
Jeong D H, Park J Y, Yu Y W. Exponentially equi-continuous C-semigroups in locally convex space. J Korean Math Soc, 1989, 26: 1–15
Jordá E. Vitali’s and Harnack’s type results for vector-valued functions. J Math Anal Appl, 2007, 327: 739–743
Kim M. Abstract Volterra Equations. PhD dissertation. Baton Rouge: Louisiana State University, 1995
Kim M. Trotter-Kato theorems for convoluted resolvent families. Commun Korean Math Soc, 2004, 19: 293–305
Kisyński J. The Petrovskiĭ correctness and semigroups of operators. Preprint, 2009
Komatsu H. Ultradistributions, I. Structure theorems and a characterization. J Fac Sci Univ Tokyo Sect IA Math, 1973, 20: 25–105
Komatsu H. Semi-groups of operators in locally convex spaces. J Math Soc Japan, 1964, 16: 230–262
Kōmura T. Semigroups of operators in locally convex spaces. J Funct Anal, 1968, 2: 258–296
Konishi Y. Cosine functions of operators in locally convex spaces. J Fac Sci Univ Tokyo Sect IA Math, 1971/72, 18: 443–463
Kostić M, Pilipović S. Convoluted C-cosine functions and semigroups. Relations with ultradistribution and hyperfunction sines. J Math Anal Appl, 2008, 338: 1224–1242
Kostić M. Differential and analytical properties of semigroups of linear operators. Integral Equations Operator Theory, 2009, 67: 499–557
Kostić M. Ill-posed abstract Volterra equations. Preprint, 2010
Kostić M. Generalized Semigroups and Cosine Functions. Belgrade: Mathematical Institute, 2011
Kostić M. (a, k)-regularized C-resolvent families: regularity and local properties. Abstr Appl Anal, 2009, Article ID 858242, 27 pages, 2009
Kunstmann P C. Stationary dense operators and generation of non-dense distribution semigroups. J Operator Theory, 1997, 37: 111–120
Lemle L D. L 1(ℝd, dx)-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electron Res Announc Math Sci, 2008, 15: 65–70
Li F B, Li M, Zheng Q. Fractional evolution equations governed by coercive differential operators. Abstr Appl Anal, 2009, Art. ID 438690, 14 pages
Li Y C. Integrated C-Semigroups and C-Cosine Functions on Locally Convex Spaces. PhD dissertation. TaiPei: National Central University, 1991
Li Y C, Shaw S Y. N-times integrated C-semigroups and the abstract Cauchy problem. Taiwanese J Math, 1997, 1: 75–102
Li M, Zheng Q, Zhang J. Regularized resolvent families. Taiwanese J Math, 2007, 11: 117–133
Lizama C. Regularized solutions for abstract Volterra equations. J Math Anal Appl, 2000, 243: 278–292
Lizama C. On approximation and representation of K-regularized resolvent families. Integral Equations Operator Theory, 2001, 41: 223–229
Lizama C, Prado H. Rates of approximations and ergodic limits of regularized operator families. J Approx Theory, 2003, 122: 42–61
Lizama C, Sánchez J. On perturbation of K-regularized resolvent families. Taiwanese J Math, 2003, 7: 217–227
Lizama C, Prado H. On duality and spectral properties of (a, k)-regularized resolvents. Proc Roy Soc Edinburgh Sect A, 2009, 139: 505–517
Martinez C, Sanz M. The Theory of Fractional Powers of Operators. Amsterdam: North-Holland Math Stud, 2001
Meise R, Vogt D. Introduction to Functional Analysis. In: Oxford Graduate Texts in Mathematics, vol. 2. New York: Oxford University Press, 1997
Müller M. Approximation of local convoluted semigroups. J Math Anal Appl, 2002, 269: 401–420
Moore R T. Generation of equicontinuous semigroups by hermitian and sectorial operators. I. Bull Amer Math Soc, 1971, 77: 224–229
Periago F, Straub B. A functional calculus for almost sectorial operators and applications to abstract evolution equations. J Evol Equ, 2002, 2: 41–68
Prüss J. Evolutionary Integral Equations and Applications. Monographs in Mathematics, 87. Basel: Birkhäuser Verlag, 1993
Prado H. On the asymptotic behavior of regularized operator families. Semigroup Forum, 2006, 73: 243–252
Schwartz L. Lectures on mixed problems in partial differential equations and the representation of semigroups. In: Tata Institute of Fundamental Research, Bombay, 1958
Straub B. Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them. Hiroshima Math J, 1994, 24: 529–548
Ushijima T. On the abstract Cauchy problem and semi-groups of linear operators in locally convex spaces. Sc Papers College Gen Ed Univ Tokyo, 1971, 21: 93–122
von Wahl W. Gebrochene potenzen eines elliptischen operators und parabolische differentialgleichungen in räumen Hölderstetiger funktionen.N Nachr Akad Wiss Göttingen Math-Phys Kl, 1972, 11: 231–2
Wu L, Zhang Y. A new topological approach to the L ∞-uniqueness of operators and L ∞-uniqueness of Fokker-Planck equations. J Funct Anal, 2006, 241: 557–610
Xiao T J, Liang J. The Cauchy Problem for Higher-Order Abstract Differential Equations. Berlin: Springer-Verlag, 1998
Xiao T J, Liang J. Abstract degenerate Cauchy problems in locally convex spaces. J Math Anal Appl, 2001, 259: 398–412
Xiao T J, Liang J. Approximations of Laplace transforms and integrated semigroups. J Funct Anal, 2000, 172: 202–220
Xiao T J, Liang J. Higher order degenerate Cauchy problems in locally convex spaces. Tübingen: Tübinger Berichte zur Funktionalanalysis, 2003
Yosida K. Holomorphic semigroups in a locally convex linear topological space. Osaka Math J, 1963, 15: 51–57
Zheng Q. Matrices of operators and regularized cosine functions. J Math Anal Appl, 2006, 315: 68–75
Zheng Q, Li Y. Abstract parabolic systems and regularized semigroups. Pacific J Math, 1998, 182: 183–199
Zheng Q. The analyticity of abstract parabolic and correct systems. Sci China Ser A, 2002, 45: 859–865