Absorption of CO2with supported imidazolium-based ionic liquid membranes

Journal of Chemical Technology and Biotechnology - Tập 90 Số 8 - Trang 1537-1544 - 2015
Baichuan Cao1, Weiheng Yan1, Jin Wang1, Hong Ding1, Yang Yu1
1Department of Municipal & Environmental Engineering; School of Civil Engineering, Beijing Jiaotong University; Beijing 100044 China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jones, 2011, CO2 capture from dilute gases as a component of modern global carbon management, Annu Rev Chem Biomol, 2, 31, 10.1146/annurev-chembioeng-061010-114252

Carvalho, 2009, High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, J Supercrit Fluids, 48, 99, 10.1016/j.supflu.2008.10.012

D'Alessandro, 2010, Carbon dioxide capture: prospects for new materials, Angew Chem Int Ed, 49, 6058, 10.1002/anie.201000431

Bara, 2009, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind Eng Chem Res, 48, 2739, 10.1021/ie8016237

Han, 2013, Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization, Int J Greenhouse Gas Control, 14, 270, 10.1016/j.ijggc.2013.01.007

Lu, 2013, CO2 capture by membrane absorption coupling process: experiments and coupling process evaluation, J Membrane Sci, 431, 9, 10.1016/j.memsci.2012.12.039

Wang, 2012, The engineering application of CO2 capture by chemical absorption in China, Adv Mater Res, 512-515, 2457, 10.4028/www.scientific.net/AMR.512-515.2457

Rogers, 2003, Ionic liquids - solvents of the future?, Science, 302, 792, 10.1126/science.1090313

Plechkova, 2008, Application of ionic liquid in the chemical industry, Chem Soc Rev, 37, 123, 10.1039/B006677J

Roy, 2013, Physics and chemistry of an ionic liquid in some industrially important solvent media probed by physicochemical techniques, J Chem Thermodyn, 57, 230, 10.1016/j.jct.2012.09.003

Blanchard, 1999, Green processing using ionic liquids and CO2, Nature, 399, 28, 10.1038/19887

Bara, 2010, Room-temperature ionic liquid and composite materials: platform technologies for CO2 capture, Acct Chem Res, 43, 152, 10.1021/ar9001747

Anderson, 2007, Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids, Acct Chem Res, 40, 1208, 10.1021/ar7001649

Pringle, 2003, The effect of anion fluorination in ionic liquids - physical properties of a range of bis(methanesulfonyl)amide salts, New J Chem, 27, 1504, 10.1039/B304072K

Hillesheim, 2012, Synthesis and characterization of thiazolium-based room temperature ionic liquids for gas separations, Ind Eng Chem Res, 51, 11530, 10.1021/ie3015632

Shiflett, 2010, Carbon dioxide capture using ionic liquid 1-butyl-3-methylimidazolium acetate, Energy Fuel, 24, 5781, 10.1021/ef100868a

Hernández-Fernandez, 2009, Preparation of supported ionic liquid membranes: influence of the ionic liquid immobilization method on their operational stability, J Membr Sci, 341, 172, 10.1016/j.memsci.2009.06.003

Barghi, 2010, An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: investigation of temperature fluctuations effects, J Membr Sci, 362, 346, 10.1016/j.memsci.2010.06.047

Kim, 2011, Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation, J Membr Sci, 372, 346, 10.1016/j.memsci.2011.02.025

Scovazzo, 2004, Gas separations using non-hexafluorophosphate [PF6−] anion supported ionic liquid membranes, J Membr Sci, 238, 57, 10.1016/j.memsci.2004.02.033

Cserjési, 2010, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J Membr Sci, 349, 6, 10.1016/j.memsci.2009.10.044

Santos, 2014, Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: influence of the temperature, J Membr Sci, 452, 277, 10.1016/j.memsci.2013.10.024

Tomé, 2013, Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes, J Membr Sci, 428, 260, 10.1016/j.memsci.2012.10.044

Neves, 2010, Gas permeation studies in supported ionic liquid membranes, J Membr Sci, 357, 160, 10.1016/j.memsci.2010.04.016

Fleischmann, 1974, Raman-spectra of pyridine adsorbed at a silver electrode, Chem Phys Lett, 26, 163, 10.1016/0009-2614(74)85388-1

Tian, 2002, Surface-enhanced Raman scattering: from noble to trasition metal and from rough surface enhanced spectroscopies, J Phys Chem B, 106, 898, 10.1021/jp0257449

Xia, 2012, Preparation of high SERS-active silver films in an aqueous solution of room temperature ionic liquids, Integr Feroelectr, 135, 62, 10.1080/10584587.2012.685386

Harroun, 2013, Electrochemical surface-enhanced Raman spectroscopy (E-SERS) of novel biodegradable ionic liquids, Phys Chem Chem Phys, 15, 19205, 10.1039/c3cp52916a

Albo, 2012, Separation performance of CO2 through supported magnetic ionic liquid membranes (SMILMs), Sep Purif Technol, 97, 26, 10.1016/j.seppur.2012.01.034

Xu, 2012, Effect of bonding interactions between arsenate and silver nanofilm on surface-enhanced Raman scattering sensitivity, J Phys Chem C, 116, 325, 10.1021/jp2088669

Camper, 2006, Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids, Ind Eng Chem Res, 45, 6279, 10.1021/ie060177n

Camper, 2004, Gas solubilities in room-temperature ionic liquid, Ind Eng Chem Res, 43, 3049, 10.1021/ie034097k

Uchytil, 2011, Ionic liquid membranes for carbon dioxide-methane separation, J Membr Sci, 383, 262, 10.1016/j.memsci.2011.08.061

Zhang, 2006, ESR and vibrational spectroscopy study on poly(vinylidene fluoride) membranes with alkaline treatment, J Power Sources, 153, 234, 10.1016/j.jpowsour.2005.05.020

Talaty, 2004, Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium haxafluorophosphate ionic liquids, J Phys Chem B, 108, 13177, 10.1021/jp040199s

Keller, 1994, 13C NMR relaxation and dual spin probe studies of molten salts containing ethylaluminum dichloride, J Phys Chem, 98, 6865, 10.1021/j100078a032

Carter, 1997, Raman spectroscopy and vibrational assignments of 1- and 2-methylimidazole, J Raman Spectrosc, 28, 939, 10.1002/(SICI)1097-4555(199712)28:12<939::AID-JRS186>3.0.CO;2-R

Hamaguchi, 2005, Structure of ionic liquids and ionic liquid compounds: are ionic liquids genuine liquids in the conventional sense?, Adv Chem Phys, 131, 85

Berg, 2007, Raman spectroscopy and ab-initio model calculations on ionic liquids, Monatsh Chem, 138, 1045, 10.1007/s00706-007-0760-9

Lu, 2013, Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillaryoptical cell with in situ Raman spectroscopic measurements, Geochim Cosmochi Ac, 115, 183, 10.1016/j.gca.2013.04.010

Dong, 2006, Hydrogen bonds in imidazolium ionic liquids, J Phys Chem A, 110, 9775, 10.1021/jp054054c

Rubim, 2008, Surface-enhanced virational spectrosocopy of tetrafluoroborate 1-n-butyl-3-methylimidazolium (BMIBF4) ionic liquid on silver surfaces, J Phys Chem C, 112, 19670, 10.1021/jp808101g

Rey, 1998, Spectroscopic and theoretical study of (CF3SO2)2 N− (TFSI−) and (CF3SO2)2NH (HTFSI), J Phys Chem A, 102, 3249, 10.1021/jp980375v

Liang, 2011, Economic analysis of amine based carbon dioxide capture system with bi-pressure stripper in supercritical coal-fired power plant, Int J Greenhouse Gas Control, 5, 702, 10.1016/j.ijggc.2011.01.004