Aboriginal and non-Aboriginal children in Western Australia carry different serotypes of pneumococci with different antimicrobial susceptibility profiles
Tóm tắt
Carriage of Streptococcus pneumoniae is considered a precursor to pneumococcal diseases including pneumonia. As part of the Kalgoorlie Otitis Media Research Project, we characterised pneumococci isolated from the nasopharynx of Western Australian Aboriginal and non-Aboriginal children. Between 1999 and 2005, 100 Aboriginal and 180 non-Aboriginal children were followed from birth to two years, with nasopharyngeal aspirates collected at ages 1–3 and 6–8 weeks, then at 4, 6, 12, 18 and 24 months. Introduction of 7-valent pneumococcal conjugate vaccine (7vPCV) in 2001 enabled evaluation of its impact on carriage in study participants according to vaccines doses received. Pneumococcal serotyping was performed by Quellung and antimicrobial susceptibility by disk diffusion and Etest®. Molecular epidemiology of pneumococcal isolates was investigated by pulse-field gel electrophoresis and multilocus sequence typing. Overall, the prevalence of 7vPCV serotypes was similar for Aboriginal and non-Aboriginal children (19 % vs. 16 %), but the prevalence of non-vaccine serotypes was higher in Aboriginal children (22 % vs. 7 %). A multi-resistant 6B clone (ST90) was found only in non-Aboriginal children. Aboriginal children who received three doses of 7vPCV had lower odds of carrying 7vPCV serotypes (odds ratio [OR] 0.19, 95 % CI 0.08–0.44) and higher odds of carrying non-vaccine serotypes (OR 2.37, 95 % CI 1.13–4.99) than unvaccinated Aboriginal children; this finding was not observed in non-Aboriginal children. This unique study shows important differences in pneumococcal serotypes, genotypes, and antimicrobial susceptibility between Aboriginal and non-Aboriginal children living in the same geographic area before widespread 7vPCV use, and highlights the need for ongoing post-vaccination surveillance in outback Australia.
Tài liệu tham khảo
Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:430–40. PMID:25280870.
O’Grady KA, Taylor-Thomson DM, Chang AB, Torzillo PJ, Morris PS, Mackenzie GA, et al. Rates of radiologically confirmed pneumonia as defined by the World Health Organization in Northern Territory Indigenous children. Med J Aust. 2010;192:592–5. PMID:20477736.
Alaghehbandan R, Gates KD, MacDonald D. Hospitalization due to pneumonia among Innu, Inuit and non-Aboriginal communities, Newfoundland and Labrador, Canada. Int J Infect Dis. 2007;11:23–8. PMID:16533615, http://dx.doi.org/10.1016/j.ijid.2005.09.003.
File TM. Community-acquired pneumonia. Lancet. 2003;362:1991–2001. PMID:14683661.
Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics. 2004;113:701–7. PMID:15060215.
Ghaffar F, Barton T, Lozano J, Muniz LS, Hicks P, Gan V, et al. Effect of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae in the first 2 years of life. Clin Infect Dis. 2004;39:930–8. PMID:15472842, http://dx.doi.org/10.1086/423379.
Millar EV, O’Brien KL, Watt JP, Bronsdon MA, Dallas J, Whitney CG, et al. Effect of community-wide conjugate pneumococcal vaccine use in infancy on nasopharyngeal carriage through 3 years of age: a cross-sectional study in a high-risk population. Clin Infect Dis. 2006;43:8–15. PMID:16758412, http://dx.doi.org/10.1086/504802.
Leach AJ, Boswell JB, Asche V, Nienhuys TG, Mathews JD. Bacterial colonization of the nasopharynx predicts very early onset and persistence of otitis media in Australian Aboriginal infants. Pediatr Infect Dis J. 1994;13:983–9. PMID:7845752, http://dx.doi.org/10.1097/00006454-199411000-00009.
Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL, Group PC. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11:841–55. PMID:22913260, http://dx.doi.org/10.1586/erv.12.53.
Ruohola A, Pettigrew MM, Lindholm L, Jalava J, Räisänen KS, Vainionpää R, et al. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J Infect. 2013;66:247–54. PMID:23266462, http://dx.doi.org/10.1016/j.jinf.2012.12.002.
Watson K, Carville K, Bowman J, Jacoby P, Riley TV, Leach AJ, Kalgoorlie Otitis Media Research Project Team, et al. Upper respiratory tract bacterial carriage in Aboriginal and non-Aboriginal children in a semi-arid area of Western Australia. Pediatr Infect Dis J. 2006;25:782–90. PMID:16940834, http://dx.doi.org/10.1097/01.inf.0000232705.49634.68.
Barry C, Krause VL, Cook HM, Menzies RI. Invasive pneumococcal disease in Australia 2007 and 2008. Commun Dis Intell Q Rep. 2012;36:E151–65. PMID:23186214.
Lehmann D, Willis J, Moore HC, Giele C, Murphy D, Keil AD, et al. The changing epidemiology of invasive pneumococcal disease in Aboriginal and non-Aboriginal Western Australians from 1997 through 2007 and emergence of nonvaccine serotypes. Clin Infect Dis. 2010;50:1477–86. PMID:20420501, http://dx.doi.org/10.1086/652440.
Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Northern California Kaiser Permanente Vaccine Study Center Group, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J. 2000;19:187–95. PMID:10749457, http://dx.doi.org/10.1097/00006454-200003000-00003.
Hennessy TW, Singleton RJ, Bulkow LR, Bruden DL, Hurlburt DA, Parks D, et al. Impact of heptavalent pneumococcal conjugate vaccine on invasive disease, antimicrobial resistance and colonization in Alaska Natives: progress towards elimination of a health disparity. Vaccine. 2005;23:5464–73. PMID:16188350, http://dx.doi.org/10.1016/j.vaccine.2005.08.100.
Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, Finnish Otitis Media Study Group, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344:403–9. PMID:11172176, http://dx.doi.org/10.1056/NEJM200102083440602.
Ben-Shimol S, Givon-Lavi N, Leibovitz E, Raiz S, Greenberg D, Dagan R. Near-elimination of otitis media caused by 13-valent pneumococcal conjugate vaccine (PCV) serotypes in southern Israel shortly after sequential introduction of 7-valent/13-valent PCV. Clin Infect Dis. 2014;59:1724–32. PMID:25159581, http://dx.doi.org/10.1093/cid/ciu683.
Black SB, Shinefield HR, Ling S, Hansen J, Fireman B, Spring D, et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr Infect Dis J. 2002;21:810–5. PMID:12352800, http://dx.doi.org/10.1097/00006454-200209000-00005.
Lucero MG, Nohynek H, Williams G, Tallo V, Simões EA, Lupisan S, et al. Efficacy of an 11-valent pneumococcal conjugate vaccine against radiologically confirmed pneumonia among children less than 2 years of age in the Philippines: a randomized, double-blind, placebo-controlled trial. Pediatr Infect Dis J. 2009;28:455–62. PMID:19483514, http://dx.doi.org/10.1097/INF.0b013e31819637af.
Pelton SI, Loughlin AM, Marchant CD. Seven valent pneumococcal conjugate vaccine immunization in two Boston communities: changes in serotypes and antimicrobial susceptibility among Streptococcus pneumoniae isolates. Pediatr Infect Dis J. 2004;23:1015–22. PMID:15545856, http://dx.doi.org/10.1097/01.inf.0000143645.58215.f0.
Leach AJ, Morris PS, McCallum GB, Wilson CA, Stubbs L, Beissbarth J, et al. Emerging pneumococcal carriage serotypes in a high-risk population receiving universal 7-valent pneumococcal conjugate vaccine and 23-valent polysaccharide vaccine since 2001. BMC Infect Dis. 2009;9:121. PMID:19650933, http://dx.doi.org/10.1186/1471-2334-9-121.
van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MPE, Harrison TG, et al. Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine. 2014;32(34):4349–55.
Australian Technical Advisory Group on Immunisation. The Australian Immunisation Handbook. 10th ed. Canberra: Australian Government Department of Health; 2013.
Lehmann D, Arumugaswamy A, Elsbury D, Finucane J, Stokes A, Monck R, et al. The Kalgoorlie Otitis Media Research Project: rationale, methods, population characteristics and ethical considerations. Paediatr Perinat Epidemiol. 2008;22:60–71. PMID:18173785, http://dx.doi.org/10.1111/j.1365-3016.2007.00891.x.
Jacoby P, Carville KS, Hall G, Riley TV, Bowman J, Leach AJ, Kalgoorlie Otitis Media Research Project Team, et al. Crowding and other strong predictors of upper respiratory tract carriage of otitis media-related bacteria in Australian Aboriginal and non-Aboriginal children. Pediatr Infect Dis J. 2011;30:480–5. PMID:21593705.
Carville KS, Bowman JM, Lehmann D, Riley TV. Comparison between nasal swabs and nasopharyngeal aspirates for, and effect of time in transit on, isolation of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. J Clin Microbiol. 2007;45:244–5. PMID:17079497, http://dx.doi.org/10.1128/JCM.01131-06.
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests; approved standard, 7th edition Pennsylvania, USA NCCLS; 2000.
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing; twelfth informational supplement. Pennsylvania, USA: NCCLS; 2002.
Sá-Leão R, Tomasz A, Sanches IS, Nunes S, Alves CR, Avô AB, et al. Genetic diversity and clonal patterns among antibiotic-susceptible and -resistant Streptococcus pneumoniae colonizing children: day care centers as autonomous epidemiological units. J Clin Microbiol. 2000;38:4137–44. PMID:11060081.
Dunne EM, Ong EK, Moser RJ, Siba PM, Phuanukoonnon S, Greenhill AR, et al. Multilocus sequence typing of Streptococcus pneumoniae by use of mass spectrometry. J Clin Microbiol. 2011;49:3756–60. PMID:21880964, http://dx.doi.org/10.1128/JCM.05113-11.
Hanage WP. Serotype replacement in invasive pneumococcal disease: where do we go from here? J Infect Dis. 2007;196:1282–4. PMID:17922390, http://dx.doi.org/10.1086/521630.
Collins DA, Hoskins A, Bowman J, Jones J, Stemberger NA, Richmond PC, et al. High nasopharyngeal carriage of non-vaccine serotypes in Western Australian aboriginal people following 10 years of pneumococcal conjugate vaccination. PLoS ONE. 2013;8:e82280. PMID:24349245, http://dx.doi.org/10.1371/journal.pone.0082280.
Brueggemann AB, Griffiths DT, Meats E, Peto T, Crook DW, Spratt BG. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J Infect Dis. 2003;187(9):1424–32.
Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis. 2007;196:1346–54. PMID:17922399, http://dx.doi.org/10.1086/521626.
Grivea IN, Priftis KN, Giotas A, Kotzia D, Tsantouli AG, Douros K, et al. Dynamics of pneumococcal carriage among day-care center attendees during the transition from the 7-valent to the higher-valent pneumococcal conjugate vaccines in Greece. Vaccine. 2014;32:6513–20. PMID:25252194, http://dx.doi.org/10.1016/j.vaccine.2014.09.016.
Murigu N. Utilisation of health services by Aboriginal and non-Aboriginal children in the Kalgoorlie Boulder region of Western Australia: Curtin University. 2008.
Carlisle JB, Gratten M, Leach AJ. Molecular epidemiology of multiple drug resistant type 6B Streptococcus pneumoniae in the Northern Territory and Queensland, Australia. Epidemiol Infect. 2001;126:25–9. PMID:11293678, http://dx.doi.org/10.1017/S0950268801005106.
Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46:305–9. PMID:24509479, http://dx.doi.org/10.1038/ng.2895.
Marsh R, Smith-Vaughan H, Hare KM, Binks M, Kong F, Warning J, et al. The nonserotypeable pneumococcus: phenotypic dynamics in the era of anticapsular vaccines. J Clin Microbiol. 2010;48:831–5. PMID:20042626, http://dx.doi.org/10.1128/JCM.01701-09.
Hoskins A, Collins D, Senasinghe K, Bowman J, Stemberger NA, Jones J, et al. Pneumococcal carriage rates remain high in Western Australian Aboriginal people: 12 years and two vaccines later. Pneumonia. 2014;3:290 [Abstract ISPPD - 0352].
Mahjoub-Messai F, Doit C, Koeck J-L, Billard T, Evrard B, Bidet P, et al. Population snapshot of Streptococcus pneumoniae serotype 19A isolates before and after introduction of Seven-Valent Pneumococcal Vaccination for French children. J Clin Microbiol. 2009;47(3):837–40.
Huebner RE, Dagan R, Porath N, Wasas AD, Klugman KP. Lack of utility of serotyping multiple colonies for detection of simultaneous nasopharyngeal carriage of different pneumococcal serotypes. Pediatr Infect Dis J. 2000;19:1017–20. PMID:11055610, http://dx.doi.org/10.1097/00006454-200010000-00019.
Satzke C, Dunne EM, Porter BD, Klugman KP, Mulholland EK. PneuCarriage project group The PneuCarriage Project: a multi-centre comparative study to identify the best serotyping methods for examining pneumococcal carriage in vaccine evaluation studies. PLoS Med. 2015;12, e1001903. PMID:26575033, http://dx.doi.org/10.1371/journal.pmed.1001903.
Williams SR, Mernagh PJ, Lee MH, Tan JT. Changing epidemiology of invasive pneumococcal disease in Australian children after introduction of a 7-valent pneumococcal conjugate vaccine. Med J Aust. 2011;194:116–20. PMID:21299484.
de Kluyver R, Enhanced Invasive Pneumococcal Disease Surveillance Working Group. Invasive pneumococcal disease surveillance Australia, 1 January to 31 March 2015. Commun Dis Intell Q Rep. 2015;39(2):E308–11.
Moore HC, Lehmann D, de Klerk N, Jacoby P, Richmond PC. Reduction in disparity for pneumonia hospitalisations between Australian indigenous and non-Indigenous children. J Epidemiol Community Health. 2012;66:489–94. PMID:21258115, http://dx.doi.org/10.1136/jech.2010.122762.