Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE
Tài liệu tham khảo
Amonette, 1998, Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline, Clays Clay Miner., 46, 51, 10.1346/CCMN.1998.0460106
Arnold, 2000, Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environ. Sci. Technol., 34, 1794, 10.1021/es990884q
Audí-Miró, 2013, Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: evidence from dual element and product isotope values, Appl. Geochem., 32, 175, 10.1016/j.apgeochem.2012.08.025
Bruckschen, 2005, Comparing different porosity measurement methods for characterization of 3D printed bone replacement scaffolds, Biomed. Tech., 50, 1609
de Bruin, 1992, Complete biological reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol., 58, 1996, 10.1128/AEM.58.6.1996-2000.1992
Butler, 1999, Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide, Environ. Sci. Technol., 33, 2021, 10.1021/es9809455
Darlington, 2013, Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone, Chemosphere, 90, 2226, 10.1016/j.chemosphere.2012.09.084
Durrance, 1978, Oxidation state of iron in the Kittleham Mudstone Formation of the New Red Sandstone series (Permian–Triassic) of southeast Devon, England, Geol. Soc. Am. Bull., 89, 1231, 10.1130/0016-7606(1978)89<1231:OSOIIT>2.0.CO;2
Elsner, 2008, Identifying abiotic chlorinated ethene degradation: Characteristic isotope patterns in reaction products with nanoscale zero-valent iron, Environ. Sci. Technol., 42, 5963, 10.1021/es8001986
Feenstra, 1984, Matrix diffusion effects on contaminant migration from an injection well in fractured sandstone, Ground Water, 22, 307, 10.1111/j.1745-6584.1984.tb01403.x
Ferrey, 2004, Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite, Environ. Sci. Technol., 38, 1746, 10.1021/es0305609
Fomin, 2010, Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fractures into porous rock matrix with bordering alteration zone, Transport Porous Media, 81, 187, 10.1007/s11242-009-9393-2
Haddad, 2012, Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size, J. Contam. Hydrol., 133, 94, 10.1016/j.jconhyd.2012.02.008
He, 2010, Impact of iron sulfide transformation on trichloroethylene degradation, Geochim. Cosmochim. Acta, 74, 2025, 10.1016/j.gca.2010.01.013
Koene-Cottaar, 1998, Anaerobic reduction of ethene to ethane in an enrichment culture, FEMS Microbiol. Ecol., 25, 251, 10.1111/j.1574-6941.1998.tb00477.x
Lacombe, 2010, Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey, Ground Water Mon. Remed., 30, 35, 10.1111/j.1745-6592.2010.01275.x
Lee, 2002, Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and Magnetite, Environ. Sci. Technol., 36, 5147, 10.1021/es025836b
Liang, 2009, Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals, Chemosphere, 75, 63, 10.1016/j.chemosphere.2008.11.042
Lipson, 2005, Matrix diffusion-derived plume attenuation in fractured bedrock, Ground Water, 43, 30, 10.1111/j.1745-6584.2005.tb02283.x
Liu, 2005, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338, 10.1021/es049195r
Macquaker, 1997, The role of iron in mudstone diagenesis: comparison of Kimmeridge Clay Formation mudstones from onshore and offshore (UKCS) localities, J. Sediment. Res., 67, 871
Mutch, 1993, Cleanup of fractured rock aquifers: implications of matrix diffusion, Environ. Monit. Assess., 24, 45, 10.1007/BF00568799
O’Loughlin, 2003, Reduction of halogenated ethanes by green rust, Environ. Toxicol. Chem., 23, 41, 10.1897/03-45
Rodríguez, 2013, Specification of matrix cleanup goals in fractured porous media, Ground Water, 51, 58, 10.1111/j.1745-6584.2012.00918.x
Schaefer, 2009, Bioaugmentation for Chlorinated Ethenes using Dehalococcoides sp.: comparison between batch and column experiments, Chemosphere, 75, 141, 10.1016/j.chemosphere.2008.12.041
Schaefer, 2010, Field scale evaluation of bioaugmentation dosage for treating chlorinated ethenes, Ground Water Monit. Rem., 30, 113, 10.1111/j.1745-6592.2010.01297.x
Schaefer, 2012, Diffusive flux and pore anisotropy in sedimentary rocks, J. Contam. Hydrol., 131, 1, 10.1016/j.jconhyd.2012.01.005
Schaefer, 2013, Coupled diffusion and abiotic reaction of trichloroethene in minimally disturbed rock matrices, Environ. Sci. Technol., 47, 4291, 10.1021/es400457s
Schrick, 2002, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles, Chem. Mater., 14, 5140, 10.1021/cm020737i
Seyedabbasi, 2012, Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones, J. Contam. Hydrol., 134–135, 69, 10.1016/j.jconhyd.2012.03.010
Szecsody, J.E., Fruchter, J.S., Sklarew, D.S., Evans, J.C., 2010. In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms. Pacific Northwest National Laboratory, PNNL-13178.
Weerasooriya, 2001, Pyrite-assisted degradation of trichloroethene (TCE), Chemosphere, 42, 389, 10.1016/S0045-6535(00)00160-0
West, 2010, Plume detachment and recession times in fractured rock, Ground Water, 48, 416, 10.1111/j.1745-6584.2009.00662.x
Yang, 2010, A permeability-porosity relationship for mudstones, Mar. Petrol. Geol., 27, 1692, 10.1016/j.marpetgeo.2009.07.001