Abelian combinatorics on words: A survey
Tài liệu tham khảo
Lothaire, 1997
Lothaire, 2002
Lothaire, 2005
Pytheas Fogg, 2002, vol. 1794
Allouche, 2003
Choffrut, 1997, Combinatorics of words, 329
2010, vol. 135
Rigo, 2014
Morse, 1938, Symbolic dynamics, Amer. J. Math., 60, 1, 10.2307/2371264
Arnoux, 1991, Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France, 119, 199, 10.24033/bsmf.2164
Droubay, 2001, Episturmian words and some constructions by de Luca and Rauzy, Theoret. Comput. Sci., 255, 10.1016/S0304-3975(99)00320-5
de Luca, 1997, Sturmian words: structure, combinatorics, and their arithmetics, Theoret. Comput. Sci., 183, 45, 10.1016/S0304-3975(96)00310-6
Mignosi, 1992, Repetitions in the fibonacci infinite word, RAIRO Theor. Inform. Appl., 26, 199, 10.1051/ita/1992260301991
Lind, 1995
Parikh, 1966, On context-free languages, J. ACM, 13, 570, 10.1145/321356.321364
Kamae, 2002, Sequence entropy and the maximal pattern complexity of infinite words, Ergodic Theory Dynam. Systems, 22, 1191, 10.1017/S014338570200055X
Coven, 1973, Sequences with minimal block growth, Math. Systems Theory, 7, 138, 10.1007/BF01762232
Richomme, 2011, Abelian complexity of minimal subshifts, J. Lond. Math. Soc., 83, 79, 10.1112/jlms/jdq063
Richomme, 2010, Balance and Abelian complexity of the Tribonacci word, Adv. Appl. Math., 45, 212, 10.1016/j.aam.2010.01.006
Turek, 2015, Abelian complexity function of the tribonacci word, J. Integer Seq., 18, 15.3.4
Shallit, 2021, Abelian complexity and synchronization, Integers, 21, A36
Cassaigne, 2000, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier, 50, 1265, 10.5802/aif.1792
Madill, 2013, The abelian complexity of the paperfolding word, Discrete Math., 313, 831, 10.1016/j.disc.2013.01.005
Blanchet-Sadri, 2014, Abelian complexity of fixed point of morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1, Integers, 14, A11
Rauzy, 1982, Suites à termes dans un alphabet fini, 1
Currie, 2011, Recurrent words with constant Abelian complexity, Adv. Appl. Math., 47, 116, 10.1016/j.aam.2010.05.001
Saarela, 2009, Ultimately constant abelian complexity of infinite words, J. Autom. Lang. Comb., 14, 255
Pansiot, 1984, Bornes inférieures sur la complexité des facteurs des mots infinis engendrés par morphismes itérés, 230
Adamczewski, 2003, Balances for fixed points of primitive substitutions, Theoret. Comput. Sci., 307, 47, 10.1016/S0304-3975(03)00092-6
Blanchet-Sadri, 2014, On the asymptotic abelian complexity of morphic words, Adv. Appl. Math., 61, 46, 10.1016/j.aam.2014.08.005
Whiteland, 2019, Asymptotic abelian complexities of certain morphic binary words, J. Autom. Lang. Comb., 24, 89
Blanchet-Sadri, 2016, Computing abelian complexity of binary uniform morphic words, Theoret. Comput. Sci., 640, 41, 10.1016/j.tcs.2016.05.046
Kamae, 2006, Maximal pattern complexity of words over l letters, European J. Combin., 27, 125, 10.1016/j.ejc.2004.07.006
Kamae, 2015, Abelian maximal pattern complexity of words, Ergodic Theory Dynam. Systems, 35, 142, 10.1017/etds.2013.51
Richmond, 2009, Counting abelian squares, Electron. J. Combin., 16, 10.37236/161
Holub, 2013, Abelian powers in paper-folding words, J. Combin. Theory Ser. A, 120, 872, 10.1016/j.jcta.2013.01.012
Cassaigne, 2011, Avoiding abelian powers in binary words with bounded abelian complexity, Internat. J. Found. Comput. Sci., 22, 905, 10.1142/S0129054111008489
Krieger, 2007, Every real number greater than 1 is a critical exponent, Theoret. Comput. Sci., 381, 177, 10.1016/j.tcs.2007.04.037
Fici, 2016, Abelian powers and repetitions in Sturmian words, Theoret. Comput. Sci., 635, 16, 10.1016/j.tcs.2016.04.039
Peltomäki, 2020, All growth rates of abelian exponents are attained by infinite binary words, vol. 170, 79:1
Fraenkel, 1998, How many squares can a string contain?, J. Combin. Theory Ser. A, 82, 112, 10.1006/jcta.1997.2843
Brlek, 2022
Li, 2022, On the number of k-powers in a finite word, Adv. Appl. Math., 139, 10.1016/j.aam.2022.102371
Kociumaka, 2016, Maximum number of distinct and nonequivalent nonstandard squares in a word, Theoret. Comput. Sci., 648, 84, 10.1016/j.tcs.2016.08.010
Simpson, 2018
Christodoulakis, 2014, On the average number of regularities in a word, Theoret. Comput. Sci., 525, 3, 10.1016/j.tcs.2013.10.007
Fici, 2017, Abelian-square-rich words, Theoret. Comput. Sci., 684, 29, 10.1016/j.tcs.2017.02.012
Entringer, 1974, On nonrepetitive sequences, J. Combin. Theory Ser. A, 16, 159, 10.1016/0097-3165(74)90041-7
Fici, 2014, On the minimum number of abelian squares in a word, Comb. Algorithmics Strings Dagstuhl Rep., 4, 34
Henshall, 2012, Shuffling and unshuffling, Bull. EATCS, 107, 131
Fici, 2018, Anti-powers in infinite words, J. Combin. Theory Ser. A, 157, 109, 10.1016/j.jcta.2018.02.009
Fici, 2019, Abelian antipowers in infinite words, Adv. Appl. Math., 108, 67, 10.1016/j.aam.2019.04.001
Ochem, 2018, Avoiding or limiting regularities in words, 177
Rampersad, 2016, Repetitions in words
Erdős, 1961, Some unsolved problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6, 221
Dekking, 1979, Strongly non-repetitive sequences and progression-free sets, J. Combin. Theory Ser. A, 27, 181, 10.1016/0097-3165(79)90044-X
Keränen, 1992, Abelian squares are avoidable on 4 letters, vol. 623, 41
Pleasants, 1970, Non-repetitive sequences, Proc. Cambridge Philos. Soc., 68, 267, 10.1017/S0305004100046077
Evdokimov, 1968, Strongly asymmetric sequences generated by a finite number of symbols. (Russian), Dokl. Akad. Nauk SSSR, 179, 1268
Keränen, 2009, A powerful abelian square-free substitution over 4 letters, Theoret. Comput. Sci., 410, 3893, 10.1016/j.tcs.2009.05.027
Carpi, 1993, On abelian power-free morphisms, Internat. J. Algebra Comput., 3, 151, 10.1142/S0218196793000123
Carpi, 1998, On the number of abelian square-free words on four letters, Discrete Appl. Math., 81, 155, 10.1016/S0166-218X(97)88002-X
Aberkane, 2004, The number of ternary words avoiding abelian cubes grows exponentially, J. Integer Seq., 7, 04.2.7
Currie, 2004, The number of binary words avoiding abelian fourth powers grows exponentially, Theoret. Comput. Sci., 319, 441, 10.1016/j.tcs.2004.02.005
Rao, 2018, Avoiding two consecutive blocks of same size and same sum over z2, SIAM J. Discrete Math., 32, 2381, 10.1137/17M1149377
Keränen, 2003, New abelian square-free DT0L-languages over 4 letters, Manuscript
Rao, 2016, Avoidability of long k-abelian repetitions, Math. Comp., 85, 3051, 10.1090/mcom/3085
Peltomäki, 2020, Avoiding abelian powers cyclically, Adv. Appl. Math., 121, 10.1016/j.aam.2020.102095
Dejean, 1972, Sur un théorème de thue, J. Comb. Theory Ser. A, 13, 90, 10.1016/0097-3165(72)90011-8
Currie, 2011, A proof of Dejean’s conjecture, Math. Comp., 80, 1063, 10.1090/S0025-5718-2010-02407-X
Rao, 2011, Last cases of Dejean’s conjecture, Theoret. Comput. Sci., 412, 3010, 10.1016/j.tcs.2010.06.020
Cassaigne, 1999, Words strongly avoiding fractional powers, European J. Combin., 20, 725, 10.1006/eujc.1999.0329
Samsonov, 2012, On abelian repetition threshold, RAIRO Theor. Inform. Appl., 46, 147, 10.1051/ita/2011127
Avgustinovich, 2002, Words avoiding abelian inclusions, J. Autom. Lang. Comb., 7, 3
Dwight Richard Bean, 1979, Avoidable patterns in strings of symbols, Pacific J. Math., 85, 261, 10.2140/pjm.1979.85.261
Zimin, 1984, Blocking sets of terms, Sbornik: Math., 47, 353, 10.1070/SM1984v047n02ABEH002647
Currie, 2008, Long binary patterns are Abelian 2-avoidable, Theoret. Comput. Sci., 409, 432, 10.1016/j.tcs.2008.08.039
Rosenfeld, 2016, Every binary pattern of length greater than 14 is abelian-2-avoidable, vol. 58, 81:1
Currie, 2001, Avoiding patterns in the abelian sense, Canad. J. Math., 53, 10.4153/CJM-2001-028-4
Mignosi, 1993, If a D0L language is k-power free then it is circular, vol. 700, 507
Currie, 2012, Fixed points avoiding Abelian k-powers, J. Combin. Theory Ser. A, 119, 942, 10.1016/j.jcta.2012.01.006
Constantinescu, 2006, Fine and wilf’s theorem for abelian periods, Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS, 89, 167
Fine, 1965, Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc., 16, 109, 10.1090/S0002-9939-1965-0174934-9
Simpson, 2016, An abelian periodicity lemma, Theoret. Comput. Sci., 656, 249, 10.1016/j.tcs.2015.12.014
Césari, 1978, Une caractérisation des mots périodiques, C. R. Math. Acad. Sci. Paris, 286, 1175
Mignosi, 1998, Periodicity and the golden ratio, Theoret. Comput. Sci., 204, 153, 10.1016/S0304-3975(98)00037-1
Avgustinovich, 2012, On abelian versions of critical factorization theorem, RAIRO Theor. Inform. Appl., 46, 3, 10.1051/ita/2011121
Charlier, 2016, Abelian bordered factors and periodicity, European J. Combin., 51, 407, 10.1016/j.ejc.2015.07.003
Domaratzki, 2012, Abelian primitive words, Internat. J. Found. Comput. Sci., 23, 1021, 10.1142/S0129054112400436
Dömösi, 2014
Goč, 2014, On the number of abelian bordered words (with an example of automatic theorem-proving), Internat. J. Found. Comput. Sci., 25, 1097, 10.1142/S0129054114400267
Shallit, 2022
Christodoulakis, 2014, Abelian borders in binary words, Discrete Appl. Math., 171, 141, 10.1016/j.dam.2014.02.012
Blanchet-Sadri, 2022, Dyck words, lattice paths, and abelian borders, Internat. J. Found. Comput. Sci., 33, 203, 10.1142/S0129054122410027
Ehrenfeucht, 1979, Periodicity and unbordered segments of words, Discrete Math., 26, 101, 10.1016/0012-365X(79)90116-X
Charlier, 2014, Infinite self-shuffling words, J. Combin. Theory Ser. A, 128, 1, 10.1016/j.jcta.2014.07.008
Holub, 2009, On highly palindromic words, Discrete Appl. Math., 157, 953, 10.1016/j.dam.2008.03.039
Ago, 2021, On highly palindromic words: The n-ary case, Discrete Appl. Math., 304, 98, 10.1016/j.dam.2021.07.020
Mignosi, 1989, Infinite words with linear subword complexity, Theoret. Comput. Sci., 65, 221, 10.1016/0304-3975(89)90046-7
Durand, 2003, Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’, Ergodic Theory Dynam. Systems, 23, 663, 10.1017/S0143385702001293
Carpi, 2000, Special factors, periodicity, and an application to Sturmian words, Acta Inf., 36, 983, 10.1007/PL00013299
Vandeth, 2000, Sturmian words and words with a critical exponent, Theoret. Comput. Sci., 242, 283, 10.1016/S0304-3975(98)00227-8
Damanik, 2002, The index of Sturmian sequences, European J. Combin., 23, 23, 10.1006/eujc.2000.0496
Currie, 2009, Least periods of factors of infinite words, RAIRO Theor. Inform. Appl., 43, 165, 10.1051/ita:2008006
Peltomäki, 2020, Abelian periods of factors of Sturmian words, J. Number Theory, 214, 251, 10.1016/j.jnt.2020.04.007
Vuillon, 2001, A characterization of Sturmian words by return words, European J. Combin., 22, 263, 10.1006/eujc.2000.0444
Rigo, 2013, Some properties of abelian return words, J. Integer Seq., 16, 13.2.5
Masáková, 2013, Enumerating abelian returns to prefixes of Sturmian words, vol. 8079, 193
Rampersad, 2014, A note on abelian returns in rotation words, Theoret. Comput. Sci., 528, 101, 10.1016/j.tcs.2014.01.033
Saari, 2010, Everywhere α-repetitive sequences and Sturmian words, European J. Combin., 31, 177, 10.1016/j.ejc.2009.01.004
Peltomäki, 2017, A square root map on Sturmian words, Electron. J. Combin., 24, P1.54, 10.37236/6074
Peltomäki, 2016
Huova, 2012, Problems in between words and abelian words: k-abelian avoidability, Theoret. Comput. Sci., 454, 172, 10.1016/j.tcs.2012.03.010
Rao, 2015, On some generalizations of abelian power avoidability, Theoret. Comput. Sci., 601, 39, 10.1016/j.tcs.2015.07.026
Karhumäki, 2013, On a generalization of abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A, 120, 2189, 10.1016/j.jcta.2013.08.008
Karhumäki, 2017, Variations of the Morse–Hedlund theorem for k-abelian equivalence, Acta Cybern., 23, 175, 10.14232/actacyb.23.1.2017.11
Parreau, 2015, A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences, Electron. J. Combin., 22, 1, 10.37236/4478
Karhumäki, 2017, On cardinalities of k-abelian equivalence classes, Theoret. Comput. Sci., 658, 190, 10.1016/j.tcs.2016.06.010
Cassaigne, 2017, k-Abelian equivalence and rationality, Fund. Inform., 154, 65
Berstel, 1988, vol. 12
Whiteland, 2019
Cassaigne, 2018, On k-abelian palindromes, Inform. and Comput., 260, 89, 10.1016/j.ic.2018.04.001
Karhumäki, 2013, Fine and Wilf’s theorem for k-abelian periods, Internat. J. Found. Comput. Sci., 24, 1135, 10.1142/S0129054113400352
Peltomäki, 2020, On k-abelian equivalence and generalized Lagrange spectra, Acta Arith., 194, 135, 10.4064/aa180927-10-9
Gerver, 1979, On certain sequences of lattice points, Pacific J. Math., 83, 357, 10.2140/pjm.1979.83.357
Avgustinovich, 2016, Weak abelian periodicity of infinite words, Theory Comput. Syst., 59, 161, 10.1007/s00224-015-9629-1
Rigo, 2015, Another generalization of abelian equivalence: Binomial complexity of infinite words, Theoret. Comput. Sci., 601, 47, 10.1016/j.tcs.2015.07.025
Chrisnata, 2022, On the number of distinct k-decks: Enumeration and bounds, Adv. Math. Commun.
Lejeune, 2020, The binomial equivalence classes of finite words, Int. J. Algebra Comput., 30, 1375, 10.1142/S0218196720500459
Lejeune, 2020, Templates for the k-binomial complexity of the tribonacci word, Adv. Appl. Math., 112, 10.1016/j.aam.2019.101947
Rigo, 2022, Binomial complexities and parikh-collinear morphisms, vol. 13257, 251
Rao, 2015, Avoiding 2-binomial squares and cubes, Theoret. Comput. Sci., 572, 83, 10.1016/j.tcs.2015.01.029
Halbeisen, 2000, An application of Van der Waerden’s theorem in additive number theory, INTEGERS: Electron. J. Comb. Number Theory
Cassaigne, 2014, Avoiding three consecutive blocks of the same size and same sum, J. ACM, 61, 10:1, 10.1145/2590775
Lietard, 2020, Avoidability of additive cubes over alphabets of four numbers, vol. 12086, 192
Lietard, 2020
Puzynina, 2022, Abelian closures of infinite binary words, J. Combin. Theory Ser. A, 185, 10.1016/j.jcta.2021.105524
Karhumäki, 2020
Karhumäki, 2018, On abelian subshifts, vol. 11088, 453
Ferenczi, 1997, Transcendence of numbers with a low complexity expansion, J. Number Theory, 67, 146, 10.1006/jnth.1997.2175
Didier, 1999, Caractérisation des N-écritures et application à l’étude des suites de complexité ultimement n+cste, Theoret. Comput. Sci., 215, 31, 10.1016/S0304-3975(97)00122-9
Kaboré, 2007, Combinatoire de mots récurrents de complexité n+2, RAIRO Theor. Inform. Appl., 41, 425, 10.1051/ita:2007027
Graham, 1973, Covering the positive integers by disjoint sets of the form {[nα+β]:n=1,2,...}, J. Combin. Theory Ser. A, 15, 354, 10.1016/0097-3165(73)90084-8
Hubert, 2000, Suites équilibrées, Theoret. Comput. Sci., 242, 91, 10.1016/S0304-3975(98)00202-3
Hejda, 2015, What is the abelianization of the Tribonacci shift?
Zamboni, 2018
Glen, 2009, Palindromic richness, European J. Combin., 30, 510, 10.1016/j.ejc.2008.04.006
Puzynina, 2019, Aperiodic two-dimensional words of small abelian complexity, Electron. J. Combin., 26, P4.15, 10.37236/8580