Abelian 2+1D loop quantum gravity coupled to a scalar field

General Relativity and Gravitation - Tập 51 - Trang 1-48 - 2019
Christoph Charles1
1Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

Tóm tắt

In order to study 3d loop quantum gravity coupled to matter, we consider a simplified model of abelian quantum gravity, the so-called $$\mathrm {U}(1)^3$$ model. Abelian gravity coupled to a scalar field shares a lot of commonalities with parameterized field theories. We use this to develop an exact quantization of the model. This is used to discuss solutions to various problems that plague even the 4d theory, namely the definition of an inverse metric and the role of the choice of representation for the holonomy-flux algebra.

Tài liệu tham khảo

Witten, E.: (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311, 46 (1988) Freidel, L., Livine, E.R., Rovelli, C.: Spectra of length and area in (2+1) Lorentzian loop quantum gravity. Class. Quant. Gravit. 20, 1463–1478 (2003). arXiv:gr-qc/0212077 Noui, K., Perez, A.: Three-dimensional loop quantum gravity: physical scalar product and spin foam models. Class. Quant. Gravit. 22, 1739–1762 (2005). arXiv:gr-qc/0402110 Date, G., Hossain, G.M.: Matter in loop quantum gravity. SIGMA 8, 010 (2012). arXiv:1110.3874 Giesel, K., Thiemann, T.: Scalar material reference systems and loop quantum gravity. Class. Quant. Gravit. 32, 135015 (2015). arXiv:1206.3807 Bilski, J., Marcianò, A.: 2+1 homogeneous loop quantum gravity with a scalar field clock, arXiv:1707.00723 Thiemann, T.: Kinematical Hilbert spaces for Fermionic and Higgs quantum field theories. Class. Quant. Gravit. 15, 1487–1512 (1998). arXiv:gr-qc/9705021 Ashtekar, A., Lewandowski, J., Sahlmann, H.: Polymer and Fock representations for a scalar field. Class. Quant. Gravit. 20, L11–1 (2003). arXiv:gr-qc/0211012 Kaminski, W., Lewandowski, J., Bobienski, M.: Background independent quantizations: the scalar field. I. Class. Quant. Gravit. 23, 2761–2770 (2006). arXiv:gr-qc/0508091 Kaminski, W., Lewandowski, J., Okolow, A.: Background independent quantizations: the scalar field II. Class. Quant. Gravit. 23, 5547–5586 (2006). arXiv:gr-qc/0604112 Dittrich, B.: Partial and complete observables for Hamiltonian constrained systems. Gen. Relativ. Gravit. 39, 1891–1927 (2007). arXiv:gr-qc/0411013 Thiemann, T.: Anomaly—free formulation of nonperturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B 380, 257–264 (1996). arXiv:gr-qc/9606088 Livine, E.R., Tambornino, J.: Holonomy operator and quantization ambiguities on spinor space. Phys. Rev. D 87(10), 104014 (2013). arXiv:1302.7142 Freidel, L., Livine, E.R.: Ponzano–Regge model revisited III: Feynman diagrams and effective field theory. Class. Quant. Gravit. 23, 2021–2062 (2006). arXiv:hep-th/0502106 Freidel, L., Livine, E.R.: Effective 3-D quantum gravity and non-commutative quantum field theory. Phys. Rev. Lett. 96, 221301 (2006). arXiv:hep-th/0512113 Ashtekar, A., Corichi, A., Zapata, J.A.: Quantum theory of geometry III: noncommutativity of Riemannian structures. Class. Quant. Gravit. 15, 2955–2972 (1998). arXiv:gr-qc/9806041 Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207–299 (2003). arXiv:hep-th/0109162 Smolin, L.: The G(Newton) –> 0 limit of Euclidean quantum gravity. Class. Quant. Gravit. 9, 883–894 (1992). arXiv:hep-th/9202076 Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quant. Gravit. 32(11), 112001 (2015). arXiv:1401.6441 Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry, arXiv:1506.08571 Koslowski, T.A.: Dynamical Quantum Geometry (DQG Programme), arXiv:0709.3465 Sahlmann, H.: On loop quantum gravity kinematics with non-degenerate spatial background. Class. Quant. Gravit. 27, 225007 (2010). arXiv:1006.0388 Koslowski, T., Sahlmann, H.: Loop quantum gravity vacuum with nondegenerate geometry. SIGMA 8, 026 (2012). arXiv:1109.4688 Hooft, G.’t: Causality in (2+1)-dimensional gravity. Class. Quant. Gravit. 9, 1335–1348 (1992) Kuchar, K.: Parametrized scalar field on R \(\times \) S(1): dynamical pictures, space-time diffeomorphisms, and conformal isometries. Phys. Rev. D 39, 1579–1593 (1989) Kuchar, K.: Dirac constraint quantization of a parametrized field theory by anomaly—free operator representations of space–time diffeomorphisms. Phys. Rev. D 39, 2263–2280 (1989) Varadarajan, M.: Dirac quantization of parametrized field theory. Phys. Rev. D 75, 044018 (2007). arXiv:gr-qc/0607068 Charles, C.: Simplicity constraints: a 3D toy model for loop quantum gravity. Phys. Rev. D 97(10), 106002 (2018). arXiv:1709.08989 Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 1: area operators. Class. Quant. Gravit. 14, A55–A82 (1997). arXiv:gr-qc/9602046 Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 2. Volume operators. Adv. Theor. Math. Phys. 1, 388–429 (1998). arXiv:gr-qc/9711031 Lewandowski, J., Okolow, A., Sahlmann, H., Thiemann, T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733 (2006). arXiv:gr-qc/0504147 Mukhanov, V., Winitzki, S.: Introduction to Quantum Effects in Gravity. Cambridge University Press, Cambridge (2007) Dittrich, B., Geiller, M.: Flux formulation of loop quantum gravity: classical framework. Class. Quant. Gravit. 32(13), 135016 (2015). arXiv:1412.3752 Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997). arXiv:hep-th/9606001