ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner
Tài liệu tham khảo
Dielubanza, 2011, Urinary tract infections in women, Med. Clin. North Am., 95, 27, 10.1016/j.mcna.2010.08.023
Foxman, 2014, Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden, Infect. Dis. Clin. North Am., 28, 1, 10.1016/j.idc.2013.09.003
Song, 2008, Innate and adaptive immune responses in the urinary tract, Eur. J. Clin. Invest., 38, 21, 10.1111/j.1365-2362.2008.02005.x
Schilling, 2003, Toll-like receptor 4 on stromal and hematopoietic cells mediates innate resistance to uropathogenic Escherichia coli, Proc. Natl. Acad. Sci. USA, 100, 4203, 10.1073/pnas.0736473100
Ulett, 2013, Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection, Curr. Opin. Microbiol., 16, 100, 10.1016/j.mib.2013.01.005
Billips, 2007, Modulation of host innate immune response in the bladder by uropathogenic Escherichia coli, Infect. Immun., 75, 5353, 10.1128/IAI.00922-07
Hunstad, 2005, Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli, Infect. Immun., 73, 3999, 10.1128/IAI.73.7.3999-4006.2005
Loughman, 2011, Attenuation of human neutrophil migration and function by uropathogenic bacteria, Microb Infect. / Institut Pasteur, 13, 555, 10.1016/j.micinf.2011.01.017
Bauckman, K.A., Owusu-Boaitey, N. & Mysorekar, I.U. Selective autophagy: Xenophagy. Methods 10.1016/j.ymeth.2014.12.005 (2014).
Levine, 2011, Autophagy in immunity and inflammation, Nature, 469, 323, 10.1038/nature09782
Deretic, 2013, Autophagy in infection, inflammation and immunity, Nat. Rev. Immunol., 13, 722, 10.1038/nri3532
Hampe, 2007, A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nat. Genet., 39, 207, 10.1038/ng1954
Rioux, 2007, Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis, Nat. Genet., 39, 596, 10.1038/ng2032
Broz, 2011, Molecular mechanisms of inflammasome activation during microbial infections, Immunol. Rev., 243, 174, 10.1111/j.1600-065X.2011.01041.x
Saitoh, 2008, Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production, Nature, 456, 264, 10.1038/nature07383
Harris, 2011, Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation, J. Biol. Chem., 286, 9587, 10.1074/jbc.M110.202911
Sorbara, 2013, The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner, Immunity, 39, 858, 10.1016/j.immuni.2013.10.013
Lapaquette, 2012, Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response, Cell. Microbiol., 14, 791, 10.1111/j.1462-5822.2012.01768.x
Cadwell, 2008, A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells, Nature, 456, 259, 10.1038/nature07416
Cadwell, 2010, Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine, Cell, 141, 1135, 10.1016/j.cell.2010.05.009
Wang, 2012, Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo, Proc. Natl. Acad. Sci. USA, 109, 11008, 10.1073/pnas.1203952109
Schilling, 2012, Macrophages modulate cardiac function in lipotoxic cardiomyopathy, Am. J. Physiol Heart Circ. Physiol., 303, H1366, 10.1152/ajpheart.00111.2012
Zeisberger, 2006, Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach, Br. J. Cancer, 95, 272, 10.1038/sj.bjc.6603240
Engel, 2006, Tumor necrosis factor alpha- and inducible nitric oxide synthase-producing dendritic cells are rapidly recruited to the bladder in urinary tract infection but are dispensable for bacterial clearance, Infect. Immun., 74, 6100, 10.1128/IAI.00881-06
Blattner, 1997, The complete genome sequence of Escherichia coli K-12, Science, 277, 1453, 10.1126/science.277.5331.1453
Lloyd, 2007, Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli, J. Bacteriol., 189, 3532, 10.1128/JB.01744-06
Franchi, 2012, Sensing and reacting to microbes through the inflammasomes, Nat. Immunol., 13, 325, 10.1038/ni.2231
Latz, 2013, Activation and regulation of the inflammasomes, Nat. Rev. Immunol., 13, 397, 10.1038/nri3452
Travassos, 2010, Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nat. Immunol., 11, 55, 10.1038/ni.1823
Carneiro, 2013, The Interplay between NLRs and Autophagy in Immunity and Inflammation, Front. Immunol., 4, 361, 10.3389/fimmu.2013.00361
Kayagaki, 2011, Non-canonical inflammasome activation targets caspase-11, Nature, 479, 112, 10.1038/nature10558
Miao, 2010, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proc. Natl. Acad. Sci. USA, 107, 3076, 10.1073/pnas.0913087107
Sauer, 2011, Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity, Proc. Natl. Acad. Sci. USA, 108, 12419, 10.1073/pnas.1019041108
Miao, 2010, Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat. Immunol., 11, 1136, 10.1038/ni.1960
Harder, 2009, Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor, J. Immunol., 183, 5823, 10.4049/jimmunol.0900444
Hornung, 2008, Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat. Immunol., 9, 847, 10.1038/ni.1631
Davis, 2011, The inflammasome NLRs in immunity, inflammation, and associated diseases, Annu. Rev. Immunol., 29, 707, 10.1146/annurev-immunol-031210-101405
Weber, 2014, Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation, J. Biol. Chem., 289, 9158, 10.1074/jbc.M113.531202
de Luca, 2014, IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans, Proc. Natl. Acad. Sci. USA, 111, 3526, 10.1073/pnas.1322831111
Marchiando, 2013, A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection, Cell Host Microbe, 14, 216, 10.1016/j.chom.2013.07.013
Starr, 2012, Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle, Cell Host Microbe, 11, 33, 10.1016/j.chom.2011.12.002
Wang, 2014, NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection, Autophagy, 10, 331, 10.4161/auto.27196
Bokil, 2011, Intramacrophage survival of uropathogenic Escherichia coli: differences between diverse clinical isolates and between mouse and human macrophages, Immunobiology, 216, 1164, 10.1016/j.imbio.2011.05.011
Sims, 2010, The IL-1 family: regulators of immunity, Nat. Rev. Immunol., 10, 10, 10.1038/nri2691
Lee, 2012, Autophagy suppresses interleukin-1beta (IL-1beta) signaling by activation of p62 degradation via lysosomal and proteasomal pathways, J. Biol. Chem., 287, 4033, 10.1074/jbc.M111.280065
Plantinga, 2011, Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2, Gut, 60, 1229, 10.1136/gut.2010.228908
Buffen, 2013, Autophagy modulates Borrelia burgdorferi-induced production of interleukin-1beta (IL-1beta), J. Biol. Chem., 288, 8658, 10.1074/jbc.M112.412841
Ingersoll, 2008, G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity, Cell. Microbiol., 10, 2568, 10.1111/j.1462-5822.2008.01230.x
Lassen, 2014, Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense, Proc. Natl. Acad. Sci. USA, 111, 7741, 10.1073/pnas.1407001111
Murthy, 2014, A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3, Nature, 506, 446, 10.1038/nature13044
Kostic, 2014, The microbiome in inflammatory bowel disease: current status and the future ahead, Gastroenterology, 146, 1489, 10.1053/j.gastro.2014.02.009
Hung, 2009, A murine model of urinary tract infection, Nat. Protoc., 4, 1230, 10.1038/nprot.2009.116