ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control

Annual Reviews - Tập 49 Số 1 - Trang 249-279 - 1998
Graham Noctor1, Christine H. Foyer2
1Laboratoire du Métabolisme, Institut National de la Recherche Agronomique, Route de Saint Cyr, 78026 Versailles cedex, France
2Department of Environmental Biology, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, United Kingdom

Tóm tắt

▪ Abstract  To cope with environmental fluctuations and to prevent invasion by pathogens, plant metabolism must be flexible and dynamic. Active oxygen species, whose formation is accelerated under stress conditions, must be rapidly processed if oxidative damage is to be averted. The lifetime of active oxygen species within the cellular environment is determined by the antioxidative system, which provides crucial protection against oxidative damage. The antioxidative system comprises numerous enzymes and compounds of low molecular weight. While research into the former has benefited greatly from advances in molecular technology, the pathways by which the latter are synthesized have received comparatively little attention. The present review emphasizes the roles of ascorbate and glutathione in plant metabolism and stress tolerance. We provide a detailed account of current knowledge of the biosynthesis, compartmentation, and transport of these two important antioxidants, with emphasis on the unique insights and advances gained by molecular exploration.

Từ khóa


Tài liệu tham khảo

10.1104/pp.107.4.1049

10.1111/j.1399-3054.1989.tb05667.x

Alvarez ME, Lamb C. 1997. Oxidative burst-mediated defense responses in plant disease resistance. See Ref.185A, pp. 815–39

10.1104/pp.98.2.501

10.1007/BF00397738

Aono M, 1993, Plant Cell Physiol., 34, 129

10.1104/pp.107.2.645

Arisi ACM. 1997. Tolérance au stress de peupliers transformés surexprimant la superoxyde dismutase la Γ-glutamyl cystéine sythétase ou la glutathion synthétase. PhD thesis. Univ. Paris XI, France

10.1007/s004250050202

10.1007/BF00762782

10.1034/j.1399-3054.1992.850216.x

Asada K. 1997. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2scavenging in plants. See Ref.185A, pp. 715–36

Asada K, Takahashi M. 1987. Production and scavenging of active oxygen in photosynthesis. InPhotoinhibition, ed. DJ Kyle, CB Osmond, CJ Arntzen, pp. 227–87. Amsterdam: Elsevier

10.1007/BF01276899

10.1104/pp.46.2.277

10.1146/annurev.py.33.090195.001503

10.1104/pp.73.1.41

10.1016/0014-5793(95)00521-A

10.1007/BF00392324

10.1002/j.1460-2075.1991.tb07696.x

10.1146/annurev.pp.43.060192.000503

10.1146/annurev.bi.59.070190.004301

10.1007/BF00032588

10.1046/j.1365-313X.1995.08020247.x

Buettner GR, Jurkiewicz BA. 1996. Chemistry and biochemistry of ascorbic acid. InHandbook of Antioxidants, ed. E Cadenas, L Packer, pp. 91–115. New York: Dekker

10.1104/pp.75.3.873

10.1038/180553a0

10.1016/S0176-1617(11)80423-2

10.1111/j.1399-3054.1988.tb02033.x

10.1111/j.1399-3054.1990.tb04396.x

10.1046/j.1365-313X.1996.10030491.x

10.1104/pp.106.1.233

10.1126/science.8266079

10.1104/pp.109.1.203

10.1104/pp.115.3.1277

10.1073/pnas.93.18.9970

10.1104/pp.112.3.1119

10.1042/bst0240465

10.1007/BF00040684

10.1006/anbo.1993.1143

10.1016/S0176-1617(11)80655-3

10.1111/j.1399-3054.1986.tb03385.x

10.1111/j.1399-3054.1983.tb04141.x

10.1016/0031-9422(91)83698-K

Doke N. 1997. The oxidative burst: roles in signal transduction and plant stress. See Ref.185A, pp. 785–813

10.1104/pp.114.3.1031

10.1111/j.1469-8137.1993.tb03747.x

10.1073/pnas.85.18.6738

10.1007/BF00194008

10.1007/BF00195343

10.1104/pp.61.1.119

10.1016/S0176-1617(11)82119-X

10.1007/BF00620058

10.1104/pp.109.4.1207

Foyer CH. 1997. Oxygen metabolism and electron transport in photosynthesis. See Ref.185A, pp. 587–22

10.1007/BF00035457

10.1007/BF00386001

10.1016/S0031-9422(00)88779-8

Foyer CH, Harbinson J. 1994. Oxygen metabolism and the regulation of photosynthetic electron transport. InCauses of Photooxidative Stresses and Amelioration of Defense Systems in Plants, ed. CH Foyer, P Mullineaux, pp. 1–42. Boca Raton, FL: CRC Press

10.1016/S0176-1617(96)80271-9

10.1104/pp.97.3.863

10.1111/j.1399-3054.1997.tb04780.x

10.1007/BF00405188

10.1104/pp.109.3.1047

10.1016/0014-5793(94)00533-8

10.1126/science.209.4455.513

10.1007/BF00391422

10.1016/0168-9452(94)90130-9

10.1104/pp.108.1.411

10.1073/pnas.86.18.6838

10.1104/pp.70.5.1233

10.1104/pp.102.1.45

10.1093/nar/12.24.9299

10.1016/0278-6915(95)00024-V

10.1034/j.1399-3054.1990.790225.x

10.1111/j.1469-8137.1990.tb00470.x

10.1016/S0968-0004(80)80091-0

10.1111/j.1399-3054.1988.tb06624.x

10.1007/BF02411460

10.1104/pp.69.2.465

Deleted in proof

10.1093/jxb/45.8.1069

10.1104/pp.100.3.1547

10.1007/BF00027124

Horemans N. 1997. Ascorbate-mediated functions at the plasma membrane of higher plants. PhD thesis. Univ. Antwerpen, Belg.

10.1104/pp.104.4.1455

10.1146/annurev.arplant.47.1.655

Hossain MA, 1984, Plant Cell Physiol., 25, 85

Huang CS, 1993, J. Biol. Chem., 268, 19675, 10.1016/S0021-9258(19)36569-X

10.1126/science.273.5283.1853

10.1093/oxfordjournals.pcp.a028991

10.1104/pp.111.4.1145

10.1104/pp.114.1.275

10.1007/BF00042043

10.1007/BF00388364

10.1105/tpc.9.4.627

10.1093/oxfordjournals.pcp.a029149

Kerk NM, 1995, Plant Development, 121, 2825

Keys AJ, 1980, Pestic. Sci., 19, 313

10.1111/j.1399-3054.1988.tb02044.x

10.1111/j.1438-8677.1992.tb00284.x

10.1016/S0176-1617(87)80273-0

10.1111/j.1399-3054.1988.tb02045.x

Koike S, 1988, Hort. Sci., 23, 713

10.1007/BF00020979

Kunert KJ, Foyer C. 1993. Thiol/disulfide exchange in plants. InSulfur Nutrition and Sulfur Assimilation in Higher Plants, ed. LJ de Kok, I Stulen, H Rennenberg, C Brunold, WE Rauser, pp. 139–51. The Hague: SPB Acad.

10.1006/bbrc.1995.2618

Lamoureux GL, Rusness DG. 1993. Glutathione in the metabolism and detoxification of xenobiotics in plants. InSulfur Nutrition and Assimilation in Higher Plants, ed. LJ de Kok, I Stulen, H Rennenberg, C Brunold, WE Rauser, pp. 221–37. The Hague: SPB Acad.

10.1104/pp.111.1.147

10.1104/pp.114.1.177

10.1042/bj2100899

10.1016/0168-9452(86)90016-6

10.1093/jxb/46.special_issue.1397

10.1016/0092-8674(94)90544-4

10.1016/0014-5793(85)81230-8

10.1016/B978-0-08-092615-5.50009-6

10.1104/pp.94.3.1492

10.1104/pp.94.3.1345

10.1111/j.1365-3040.1996.tb00254.x

10.1016/0168-9452(87)90159-2

10.1006/pest.1994.1004

10.1016/0168-9452(90)90114-4

10.1042/bj0680395

10.1042/bj0640013

10.1146/annurev.arplant.47.1.127

10.1104/pp.110.4.1367

10.1104/pp.103.2.621

10.1073/pnas.91.21.10059

10.1104/pp.111.4.1177

10.1104/pp.103.4.1155

10.1104/pp.105.2.467

10.1016/0014-5793(95)01448-9

Meister A, 1988, J. Biol. Chem., 263, 17205, 10.1016/S0021-9258(19)77815-6

Meister A, 1994, J. Biol. Chem., 269, 9397, 10.1016/S0021-9258(17)36891-6

10.1016/0014-5793(93)80858-R

10.1016/0966-842X(96)81499-5

Mittler R, 1992, J. Biol. Chem., 267, 21802, 10.1016/S0021-9258(19)36683-9

10.1111/j.1365-313X.1994.00397.x

Miyake C, 1992, Plant Cell Physiol., 33, 541

10.1007/s002800050105

Mulcahy RT, 1995, Cancer Res., 55, 4771

10.1042/bst0220931

Mullineaux PM, Wellburn AR, Baker NR, Creissen GP. 1997. Increased capacity for glutathione biosynthesis in the chloroplast paradoxically promotes oxidative stress in transgenic tobacco. InSulphur Metabolism in Higher Plants. Molecular, Ecophysiological and Nutritional Aspects, ed. WJ Cram, LJ De Kok, I Stulen, C Brunold, H Rennenberg, pp. 269–70. Leiden: Backhuys

Nakagawara S, 1993, Plant Cell Physiol., 34, 421

Nakano Y, 1987, Plant Cell Physiol., 28, 131

10.1007/BF01276895

10.3177/jnsv.42.77

10.1016/0014-5793(91)80672-P

10.1007/978-1-4613-0325-1_2

Deleted in proof

Noctor G, 1997, J. Exp. Bot.

10.1007/s004250050138

10.1111/j.1399-3054.1997.tb04781.x

Noctor G, Jouanin L, Foyer CH. 1997. The biosynthesis of glutathione explored in transgenic plants. InRegulation of Enzymatic Systems Detoxifying Xenobiotics in Plants, ed. K Hatzios, pp. 109–24. Dordrecht: Kluwer Academic

10.1104/pp.112.3.1071

10.1104/pp.88.4.1407

Oba K, 1994, Plant Cell Physiol., 35, 473

10.1093/oxfordjournals.jbchem.a124697

10.1146/annurev.pp.35.060184.002215

10.1016/0922-338X(89)90092-5

10.1046/j.1365-313X.1993.04050887.x

10.1093/jxb/46.special_issue.1351

10.1139/o90-173

10.1104/pp.97.1.452

10.1111/j.1365-3040.1995.tb00569.x

10.1046/j.1365-313X.1996.10061017.x

10.1105/tpc.6.1.65

10.1034/j.1399-3054.1996.970224.x

10.1016/0168-9452(87)90190-7

10.1104/pp.97.1.128

10.1104/pp.106.1.187

10.1016/0014-5793(95)01253-1

10.1016/0031-9422(80)85045-X

10.1007/BF00384591

10.1111/j.1399-3054.1981.tb08496.x

Richman PG, 1975, J. Biol. Chem., 250, 1422, 10.1016/S0021-9258(19)41830-9

Römer S, 1992, J. Biol. Chem., 267, 17966, 10.1016/S0021-9258(19)37137-6

10.1096/fasebj.7.12.8375611

10.1104/pp.99.2.428

10.1104/pp.101.2.561

10.1104/pp.93.4.1579

10.1111/j.1432-1033.1995.tb20416.x

10.1104/pp.94.3.1496

10.1016/S0031-9422(96)00642-5

10.1073/pnas.94.6.2745

Scandalios J, 1997, Oxidative Stress and the Molecular Biology of Antioxidant Defences.

10.1104/pp.85.4.1031

10.1104/pp.82.3.700

10.1104/pp.74.4.866

Schneider A, 1992, Plant Physiol. Biochem., 30, 29

10.1111/j.1438-8677.1995.tb00828.x

Schupp R, Rennenberg H. 1990. Diurnal changes in the thiol composition of spruce needles. InSulfur Nutrition and Sulfur Assimilation in Higher Plants, ed. H Rennenberg, CH Brunold, LJ de Kok, I Stulen, pp. 89–96. The Hague: SPB Acad.

10.1104/pp.96.2.650

10.1073/pnas.90.4.1629

10.1104/pp.103.4.1067

10.1104/pp.105.4.1089

10.1073/pnas.93.10.4868

Shi MM, 1994, J. Biol. Chem., 42, 26512, 10.1016/S0021-9258(18)47224-9

10.1104/pp.107.3.737

10.1006/anbo.1996.0175

10.1093/jxb/39.8.1097

10.1016/0031-9422(89)80182-7

10.1104/pp.79.4.1044

10.1016/0304-4211(84)90198-6

10.1016/0168-9452(85)90059-7

10.1111/j.1399-3054.1984.tb05905.x

10.1515/znc-1985-1-208

10.1111/j.1399-3054.1987.tb09231.x

Strohm M. 1996. Biochemische, physiologische und molekulare Grundlagen des Glutathion-Stoffwechsels in Pappeln (Populus tremula x P. alba). PhD thesis. Univ. Freiburg, Ger.

Deleted in proof

10.1046/j.1365-313X.1995.07010141.x

10.1042/bj3200321

10.1111/j.1399-3054.1993.tb05286.x

10.1093/oxfordjournals.pcp.a078634

10.1104/pp.112.1.273

Tanaka K, 1985, Plant Cell Physiol., 26, 1425

10.1007/BF00027496

10.1007/BF00198042

10.1046/j.1365-313X.1997.11061187.x

10.1016/S0176-1617(11)80894-1

10.1016/0014-5793(94)00947-3

10.1111/j.1432-1033.1996.00662.x

Deleted in proof

10.1104/pp.112.4.1703

10.1038/nbt0294-165

10.1016/S0176-1617(11)80766-2

10.1016/0003-2697(92)90131-P

10.1093/nar/14.11.4393

Wells WW, 1990, J. Biol. Chem., 265, 15361, 10.1016/S0021-9258(18)55401-6

10.1093/emboj/16.16.4806

10.1007/BF02277422

10.1104/pp.106.3.1007

Wingate VPM, 1988, Plant Physiol., 31, 205

10.1007/BF00199748

10.1007/BF02411558

10.1104/pp.83.2.278

10.1093/oxfordjournals.pcp.a078862

10.1104/pp.114.2.529