APOBEC3DE Antagonizes Hepatitis B Virus Restriction Factors APOBEC3F and APOBEC3G
Tài liệu tham khảo
Jarmuz, 2002, An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, 79, 285, 10.1006/geno.2002.6718
Conticello, 2005, Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases, Mol. Biol. Evol., 22, 367, 10.1093/molbev/msi026
Harris, 2003, DNA deamination mediates innate immunity to retroviral infection, Cell, 113, 803, 10.1016/S0092-8674(03)00423-9
Lecossier, 2003, Hypermutation of HIV-1 DNA in the absence of the Vif protein, Science, 300, 1112, 10.1126/science.1083338
Mangeat, 2003, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, 424, 99, 10.1038/nature01709
Mariani, 2003, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, 114, 21, 10.1016/S0092-8674(03)00515-4
Sheehy, 2002, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, 418, 646, 10.1038/nature00939
Lucifora, 2014, Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA, Science, 343, 1221, 10.1126/science.1243462
Noguchi, 2005, G to A hypermutation of hepatitis B virus, Hepatology, 41, 626, 10.1002/hep.20580
Suspène, 2005, Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A., 102, 8321, 10.1073/pnas.0408223102
Turelli, 2004, Inhibition of hepatitis B virus replication by APOBEC3G, Science, 303, 1829, 10.1126/science.1092066
Vartanian, 2010, Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis, PLoS Pathog., 6, 10.1371/journal.ppat.1000928
Suspène, 2011, Genetic editing of herpes simplex virus 1 and Epstein–Barr herpesvirus genomes by human APOBEC3 cytidine deaminases in culture and in vivo, J. Virol., 85, 7594, 10.1128/JVI.00290-11
Vartanian, 2008, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions, Science, 320, 230, 10.1126/science.1153201
Wang, 2014, APOBEC3 deaminases induce hypermutation in human papillomavirus 16 DNA upon beta interferon stimulation, J. Virol., 88, 1308, 10.1128/JVI.03091-13
Warren, 2015, APOBEC3A functions as a restriction factor of human papillomavirus, J. Virol., 89, 688, 10.1128/JVI.02383-14
Bogerd, 2006, Cellular inhibitors of long interspersed element 1 and Alu retrotransposition, Proc. Natl. Acad. Sci. U. S. A., 103, 8780, 10.1073/pnas.0603313103
Chen, 2006, APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons, Curr. Biol., 16, 480, 10.1016/j.cub.2006.01.031
Muckenfuss, 2006, APOBEC3 proteins inhibit human LINE-1 retrotransposition, J. Biol. Chem., 281, 22,161, 10.1074/jbc.M601716200
Suspène, 2004, APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase, Nucleic Acids Res., 32, 2421, 10.1093/nar/gkh554
Aynaud, 2012, Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A, J. Biol. Chem., 287, 39,182, 10.1074/jbc.M112.372722
Bonvin, 2006, Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication, Hepatology, 43, 1364, 10.1002/hep.21187
Koning, 2009, Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets, J. Virol., 83, 9474, 10.1128/JVI.01089-09
Peng, 2006, Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity, J. Exp. Med., 203, 41, 10.1084/jem.20051512
Stenglein, 2010, APOBEC3 proteins mediate the clearance of foreign DNA from human cells, Nat. Struct. Mol. Biol., 17, 222, 10.1038/nsmb.1744
Burns, 2013, APOBEC3B is an enzymatic source of mutation in breast cancer, Nature, 494, 366, 10.1038/nature11881
Caval, 2014, A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3'UTR enhances chromosomal DNA damage, Nat. Commun., 5, 5129, 10.1038/ncomms6129
Mussil, 2013, Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death, PLoS ONE, 8, 10.1371/journal.pone.0073641
Shinohara, 2012, APOBEC3B can impair genomic stability by inducing base substitutions in genomic DNA in human cells, Sci. Rep., 2, 806, 10.1038/srep00806
Suspène, 2011, Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism, Proc. Natl. Acad. Sci. U. S. A., 108, 4858, 10.1073/pnas.1009687108
Carpenter, 2012, Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A, J. Biol. Chem., 287, 34,801, 10.1074/jbc.M112.385161
Suspène, 2013, Efficient deamination of 5-methylcytidine and 5-substituted cytidine residues in DNA by human APOBEC3A cytidine deaminase, PLoS ONE, 8, 10.1371/journal.pone.0063461
Wijesinghe, 2012, Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G, Nucleic Acids Res., 40, 9206, 10.1093/nar/gks685
Caval, 2014, Orthologous mammalian APOBEC3A cytidine deaminases hypermutate nuclear DNA, Mol. Biol. Evol., 31, 330, 10.1093/molbev/mst195
Landry, 2011, APOBEC3A can activate the DNA damage response and cause cell-cycle arrest, EMBO Rep., 12, 444, 10.1038/embor.2011.46
Bishop, 2004, Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr. Biol., 14, 1392, 10.1016/j.cub.2004.06.057
Beale, 2004, Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo, J. Mol. Biol., 337, 585, 10.1016/j.jmb.2004.01.046
Hache, 2005, The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain, J. Biol. Chem., 280, 10,920, 10.1074/jbc.M500382200
Newman, 2005, Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity, Curr. Biol., 15, 166, 10.1016/j.cub.2004.12.068
Henry, 2009, Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G, PLoS ONE, 4, 10.1371/journal.pone.0004277
Bohn, 2015, The ssDNA Mutator APOBEC3A is regulated by cooperative dimerization, Structure, 23, 903, 10.1016/j.str.2015.03.016
Friew, 2009, Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA, Retrovirology, 6, 56, 10.1186/1742-4690-6-56
Huthoff, 2009, RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1, PLoS Pathog., 5, 10.1371/journal.ppat.1000330
Koyama, 2013, APOBEC3G oligomerization is associated with the inhibition of both Alu and LINE-1 retrotransposition, PLoS ONE, 8, 10.1371/journal.pone.0084228
Stauch, 2009, Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation, Proc. Natl. Acad. Sci. U. S. A., 106, 12,079, 10.1073/pnas.0900979106
Wiegand, 2004, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J., 23, 2451, 10.1038/sj.emboj.7600246
Brar, 2008, Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA, DNA Repair, 7, 77, 10.1016/j.dnarep.2007.08.002
Salter, 2009, A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function, Biochemistry, 48, 10,685, 10.1021/bi901642c
Chiu, 2006, High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition, Proc. Natl. Acad. Sci. U. S. A., 103, 15,588, 10.1073/pnas.0604524103
McDougall, 2011, Deaminase activity on single-stranded DNA (ssDNA) occurs in vitro when APOBEC3G cytidine deaminase forms homotetramers and higher-order complexes, J. Biol. Chem., 286, 30,655, 10.1074/jbc.M111.269506
Wedekind, 2006, Nanostructures of APOBEC3G support a hierarchical assembly model of high molecular mass ribonucleoprotein particles from dimeric subunits, J. Biol. Chem., 281, 38,122, 10.1074/jbc.C600253200
Dang, 2011, Identification of a single amino acid required for APOBEC3 antiretroviral cytidine deaminase activity, J. Virol., 85, 5691, 10.1128/JVI.00243-11
Holmes, 2007, APOBEC3F can inhibit the accumulation of HIV-1 reverse transcription products in the absence of hypermutation. Comparisons with APOBEC3G, J. Biol. Chem., 282, 2587, 10.1074/jbc.M607298200
Nguyen, 2007, Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G, J. Virol., 81, 4465, 10.1128/JVI.02510-06
Rosler, 2005, APOBEC-mediated interference with hepadnavirus production, Hepatology, 42, 301, 10.1002/hep.20801
LaRue, 2008, The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals, BMC Mol. Biol., 9, 104, 10.1186/1471-2199-9-104
Dang, 2006, Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family, J. Virol., 80, 10,522, 10.1128/JVI.01123-06
Peng, 2007, Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression, Blood, 110, 393, 10.1182/blood-2006-10-051763
Chaipan, 2013, APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages, J. Virol., 87, 444, 10.1128/JVI.00676-12
Duggal, 2011, The breadth of antiviral activity of Apobec3DE in chimpanzees has been driven by positive selection, J. Virol., 85, 11,361, 10.1128/JVI.05046-11
Bennett, 2008, APOBEC3G subunits self-associate via the C-terminal deaminase domain, J. Biol. Chem., 283, 33,329, 10.1074/jbc.M803726200
Chelico, 2010, Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G, J. Biol. Chem., 285, 16,195, 10.1074/jbc.M110.107987
Shlyakhtenko, 2011, Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G, J. Biol. Chem., 286, 3387, 10.1074/jbc.M110.195685
Suspène, 2005, Recovery of APOBEC3-edited human immunodeficiency virus G→A hypermutants by differential DNA denaturation PCR, J. Gen. Virol., 86, 125, 10.1099/vir.0.80426-0
Ara, 2014, Different mutagenic potential of HIV-1 restriction factors APOBEC3G and APOBEC3F is determined by distinct single-stranded DNA scanning mechanisms, PLoS Pathog., 10, 10.1371/journal.ppat.1004024
Stephens, 2012, The landscape of cancer genes and mutational processes in breast cancer, Nature, 486, 400, 10.1038/nature11017
Baumert, 2007, Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C, Hepatology, 46, 682, 10.1002/hep.21733
Hultquist, 2011, Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1, J. Virol., 84, 11,220, 10.1128/JVI.05238-11
Sato, 2014, APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model, PLoS Pathog., 10, 10.1371/journal.ppat.1004453
Schoggins, 2011, A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, 472, 481, 10.1038/nature09907
Polson, 1996, RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase, Nature, 380, 454, 10.1038/380454a0
Gagneux, 1999, Mitochondrial sequences show diverse evolutionary histories of African hominoids, Proc. Natl. Acad. Sci. U. S. A., 96, 5077, 10.1073/pnas.96.9.5077
Pineau, 2008, Chromosome instability in human hepatocellular carcinoma depends on p53 status and aflatoxin exposure, Mutat. Res., 653, 6, 10.1016/j.mrgentox.2008.01.012
Pineau, 1999, Identification of three distinct regions of allelic deletions on the short arm of chromosome 8 in hepatocellular carcinoma, Oncogene, 18, 3127, 10.1038/sj.onc.1202648
Marchio, 2000, Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients, Oncogene, 19, 3733, 10.1038/sj.onc.1203713