APOBEC: From mutator to editor

Journal of Genetics and Genomics - Tập 44 - Trang 423-437 - 2017
Bei Yang1, Xiaosa Li2, Liqun Lei2, Jia Chen2
1Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
2School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

Tài liệu tham khảo

Ahasan, 2015, APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity, Biochem. Biophys. Res. Commun., 457, 295, 10.1016/j.bbrc.2014.12.103 Alexandrov, 2016, Mutational signatures associated with tobacco smoking in human cancer, Science, 354, 618, 10.1126/science.aag0299 Alexandrov, 2013, Signatures of mutational processes in human cancer, Nature, 500, 415, 10.1038/nature12477 Balakrishnan, 2013, Okazaki fragment metabolism, Cold Spring Harb. Perspect. Biol., 5, 10.1101/cshperspect.a010173 Barnes, 2004, Repair and genetic consequences of endogenous DNA base damage in mammalian cells, Annu. Rev. Genet., 38, 445, 10.1146/annurev.genet.38.072902.092448 Benayoun, 2015, Epigenetic regulation of ageing: linking environmental inputs to genomic stability, Nat. Rev. Mol. Cell Biol., 16, 593, 10.1038/nrm4048 Bishop, 2004, Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr. Biol., 14, 1392, 10.1016/j.cub.2004.06.057 Blanc, 2003, A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling, J. Biol. Chem., 278, 41198, 10.1074/jbc.M302951200 Bogerd, 2004, A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor, Proc. Natl. Acad. Sci. U. S. A., 101, 3770, 10.1073/pnas.0307713101 Bohn, 2013, Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain, Structure, 21, 1042, 10.1016/j.str.2013.04.010 Bohn, 2015, The ssDNA mutator APOBEC3A is regulated by cooperative dimerization, Structure, 23, 903, 10.1016/j.str.2015.03.016 Bransteitter, 2003, Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase, Proc. Natl. Acad. Sci. U. S. A., 100, 4102, 10.1073/pnas.0730835100 Burns, 2013, APOBEC3B is an enzymatic source of mutation in breast cancer, Nature, 494, 366, 10.1038/nature11881 Burns, 2013, Evidence for APOBEC3B mutagenesis in multiple human cancers, Nat. Genet., 45, 977, 10.1038/ng.2701 Byeon, 2013, NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity, Nat. Commun., 4, 1890, 10.1038/ncomms2883 Byeon, 2016, Nuclear magnetic resonance structure of the APOBEC3B catalytic domain: structural basis for substrate binding and DNA deaminase activity, Biochemistry, 55, 2944, 10.1021/acs.biochem.6b00382 Caglayan, 2015, Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair, DNA Repair, 35, 85, 10.1016/j.dnarep.2015.09.010 Caval, 2014, A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage, Nat. Commun., 5, 5129, 10.1038/ncomms6129 Ceccaldi, 2016, Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52, 10.1016/j.tcb.2015.07.009 Cescon, 2015, APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation, Proc. Natl. Acad. Sci. U. S. A., 112, 2841, 10.1073/pnas.1424869112 Chan, 2015, An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers, Nat. Genet., 47, 1067, 10.1038/ng.3378 Chan, 2012, Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent, PLoS Genet., 8, e1003149, 10.1371/journal.pgen.1003149 Chan, 1997, Apobec-1 and apolipoprotein B mRNA editing, Biochim. Biophys. Acta, 1345, 11, 10.1016/S0005-2760(96)00156-7 Chelico, 2006, APOBEC3G DNA deaminase acts processively 3′→5′ on single-stranded DNA, Nat. Struct. Mol. Biol., 13, 392, 10.1038/nsmb1086 Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001 Chen, 2006, APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons, Curr. Biol., 16, 480, 10.1016/j.cub.2006.01.031 Chen, 2015, Breaking bad: the mutagenic effect of DNA repair, DNA Repair, 32, 43, 10.1016/j.dnarep.2015.04.012 Chen, 2014, Repair of naturally occurring mismatches can induce mutations in flanking DNA, eLife, 3, e02001, 10.7554/eLife.02001 Chen, 2008, Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G, Nature, 452, 116, 10.1038/nature06638 Chen, 2016, The in vitro biochemical characterization of an HIV-1 restriction factor APOBEC3F: importance of Loop 7 on both CD1 and CD2 for DNA binding and deamination, J. Mol. Biol., 428, 2661, 10.1016/j.jmb.2016.03.031 Chu, 2015, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543, 10.1038/nbt.3198 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Conticello, 2003, The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G, Curr. Biol., 13, 2009, 10.1016/j.cub.2003.10.034 Conticello, 2005, Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases, Mol. Biol. Evol., 22, 367, 10.1093/molbev/msi026 Cox, 2015, Therapeutic genome editing: prospects and challenges, Nat. Med., 21, 121, 10.1038/nm.3793 Cyranoski, 2016, Chinese scientists to pioneer first human CRISPR trial, Nature, 535, 476, 10.1038/nature.2016.20302 Cyranoski, 2016, CRISPR gene-editing tested in a person for the first time, Nature, 539, 479, 10.1038/nature.2016.20988 Dang, 2006, Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family, J. Virol., 80, 10522, 10.1128/JVI.01123-06 Davidson, 1995, Apolipoprotein B messenger RNA editing: insights into the molecular regulation of post-transcriptional cytidine deamination, Curr. Opin. Lipidol., 6, 70, 10.1097/00041433-199504000-00002 Doehle, 2005, Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif, Virology, 339, 281, 10.1016/j.virol.2005.06.005 Dutko, 2005, Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases, Curr. Biol., 15, 661, 10.1016/j.cub.2005.02.051 Esnault, 2005, APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses, Nature, 433, 430, 10.1038/nature03238 Etard, 2010, Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos, J. Cell Biol., 189, 527, 10.1083/jcb.200912125 Faltas, 2016, Clonal evolution of chemotherapy-resistant urothelial carcinoma, Nat. Genet., 48, 1490, 10.1038/ng.3692 Furukawa, 2009, Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G, EMBO J., 28, 440, 10.1038/emboj.2008.290 Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029 Gooch, 2008, Functional domain organization of human APOBEC3G, Virology, 379, 118, 10.1016/j.virol.2008.06.013 Greenman, 2007, Patterns of somatic mutation in human cancer genomes, Nature, 446, 153, 10.1038/nature05610 Greider, 1999, Telomeres do D-loop-T-loop, Cell, 97, 419, 10.1016/S0092-8674(00)80750-3 Haradhvala, 2016, Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair, Cell, 164, 538, 10.1016/j.cell.2015.12.050 Harjes, 2009, An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model, J. Mol. Biol., 389, 819, 10.1016/j.jmb.2009.04.031 Harris, 2003, DNA deamination mediates innate immunity to retroviral infection, Cell, 113, 803, 10.1016/S0092-8674(03)00423-9 Harris, 2015, APOBECs and virus restriction, Virology, 479–480, 131, 10.1016/j.virol.2015.03.012 Harris, 2004, Retroviral restriction by APOBEC proteins, Nat. Rev. Immunol., 4, 868, 10.1038/nri1489 Harris, 2002, RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators, Mol. Cell, 10, 1247, 10.1016/S1097-2765(02)00742-6 Hasler, 2011, Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A), Proc. Natl. Acad. Sci. U. S. A., 108, 18366, 10.1073/pnas.1106729108 Henderson, 2014, APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development, Cell Rep., 7, 1833, 10.1016/j.celrep.2014.05.012 Hess, 2016, Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells, Nat. Methods, 13, 1036, 10.1038/nmeth.4038 Holden, 2008, Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications, Nature, 456, 121, 10.1038/nature07357 Hoopes, 2016, APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication, Cell Rep., 14, 1273, 10.1016/j.celrep.2016.01.021 Hulme, 2007, Selective inhibition of Alu retrotransposition by APOBEC3G, Gene, 390, 199, 10.1016/j.gene.2006.08.032 Hultquist, 2011, Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1, J. Virol., 85, 11220, 10.1128/JVI.05238-11 Huthoff, 2009, RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1, PLoS Pathog., 5, e1000330, 10.1371/journal.ppat.1000330 Huthoff, 2007, Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation, J. Virol., 81, 3807, 10.1128/JVI.02795-06 Ito, 2004, Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc. Natl. Acad. Sci. U. S. A., 101, 1975, 10.1073/pnas.0307335101 Jarmuz, 2002, An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, 79, 285, 10.1006/geno.2002.6718 Jiang, 2016, Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage, Science, 351, 867, 10.1126/science.aad8282 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Kanu, 2016, DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer, Genome Biol., 17, 185, 10.1186/s13059-016-1042-9 Kazanov, 2015, APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions, Cell Rep., 13, 1103, 10.1016/j.celrep.2015.09.077 Kim, 2017, Genome-wide target specificities of CRISPR RNA-guided programmable deaminases, Nat. Biotechnol., 35, 475, 10.1038/nbt.3852 Kim, 2017, Highly efficient RNA-guided base editing in mouse embryos, Nat. Biotechnol., 35, 435, 10.1038/nbt.3816 Kim, 2017, Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions, Nat. Biotechnol., 35, 371, 10.1038/nbt.3803 Kinomoto, 2007, All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition, Nucleic Acids Res., 35, 2955, 10.1093/nar/gkm181 Kinoshita, 2001, Linking class-switch recombination with somatic hypermutation, Nat. Rev. Mol. Cell Biol., 2, 493, 10.1038/35080033 Kitamura, 2012, The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat, Struct. Mol. Biol., 19, 1005, 10.1038/nsmb.2378 Kock, 2008, Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H, J. Gen. Virol., 89, 1184, 10.1099/vir.0.83507-0 Komor, 2017, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 168, 20, 10.1016/j.cell.2016.10.044 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136 Kuscu, 2017, CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations, Nat. Methods, 14, 710, 10.1038/nmeth.4327 Landrum, 2014, ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res., 42, D980, 10.1093/nar/gkt1113 Lecossier, 2003, Hypermutation of HIV-1 DNA in the absence of the Vif protein, Science, 300, 1112, 10.1126/science.1083338 Leonard, 2013, APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma, Cancer Res., 73, 7222, 10.1158/0008-5472.CAN-13-1753 Li, 2012, First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G, ACS Chem. Biol., 7, 506, 10.1021/cb200440y Liang, 2017, Effective gene editing by high-fidelity base editor 2 in mouse zygotes, Protein Cell, 8, 601, 10.1007/s13238-017-0418-2 Liao, 1999, APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family, Biochem. Biophys. Res. Commun., 260, 398, 10.1006/bbrc.1999.0925 Liddament, 2004, APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo, Curr. Biol., 14, 1385, 10.1016/j.cub.2004.06.050 Liu, 2016, Editing DNA methylation in the mammalian genome, Cell, 167, 233, 10.1016/j.cell.2016.08.056 Long, 2013, A common deletion in the APOBEC3 genes and breast cancer risk, J. Natl. Cancer Inst., 105, 573, 10.1093/jnci/djt018 Lu, 2015, Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA, J. Biol. Chem., 290, 4010, 10.1074/jbc.M114.624262 Lu, 2017, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system, Mol. Plant, 10, 523, 10.1016/j.molp.2016.11.013 Luo, 2007, Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation, J. Virol., 81, 7238, 10.1128/JVI.02584-06 Ma, 2016, Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow, Nat. Biotechnol., 34, 528, 10.1038/nbt.3526 Ma, 2016, Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells, Nat. Methods, 13, 1029, 10.1038/nmeth.4027 Maciejowski, 2015, Chromothripsis and kataegis induced by telomere crisis, Cell, 163, 1641, 10.1016/j.cell.2015.11.054 Mali, 2013, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833, 10.1038/nbt.2675 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Mangeat, 2003, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, 424, 99, 10.1038/nature01709 Mariani, 2003, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, 114, 21, 10.1016/S0092-8674(03)00515-4 Marin, 2008, Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism, J. Virol., 82, 987, 10.1128/JVI.01078-07 Marino, 2016, APOBEC4 enhances the replication of HIV-1, PLoS One, 11, e0155422, 10.1371/journal.pone.0155422 Maruyama, 2015, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nat. Biotechnol., 33, 538, 10.1038/nbt.3190 Mbisa, 2007, Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration, J. Virol., 81, 7099, 10.1128/JVI.00272-07 Mehta, 2000, Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA, Mol. Cell Biol., 20, 1846, 10.1128/MCB.20.5.1846-1854.2000 Middlebrooks, 2016, Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors, Nat. Genet., 48, 1330, 10.1038/ng.3670 Mikl, 2005, Mice deficient in APOBEC2 and APOBEC3, Mol. Cell Biol., 25, 7270, 10.1128/MCB.25.16.7270-7277.2005 Minegishi, 2000, Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome, Clin. Immunol., 97, 203, 10.1006/clim.2000.4956 Morganella, 2016, The topography of mutational processes in breast cancer genomes, Nat. Commun., 7, 11383, 10.1038/ncomms11383 Morita, 2016, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol., 34, 1060, 10.1038/nbt.3658 Mukhopadhyay, 2002, C→U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme, Am. J. Hum. Genet., 70, 38, 10.1086/337952 Muramatsu, 2000, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, 102, 553, 10.1016/S0092-8674(00)00078-7 Muramatsu, 1999, Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells, J. Biol. Chem., 274, 18470, 10.1074/jbc.274.26.18470 Nakamura, 2015, Genomic spectra of biliary tract cancer, Nat. Genet., 47, 1003, 10.1038/ng.3375 Nakashima, 2015, Structural insights into HIV-1 Vif-APOBEC3F interaction, J. Virol., 90, 1034, 10.1128/JVI.02369-15 Narvaiza, 2009, Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase, PLoS Pathog., 5, e1000439, 10.1371/journal.ppat.1000439 Navarro, 2005, Complementary function of the two catalytic domains of APOBEC3G, Virology, 333, 374, 10.1016/j.virol.2005.01.011 Newman, 2005, Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity, Curr. Biol., 15, 166, 10.1016/j.cub.2004.12.068 Nik-Zainal, 2012, Mutational processes molding the genomes of 21 breast cancers, Cell, 149, 979, 10.1016/j.cell.2012.04.024 Nik-Zainal, 2016, Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, 534, 47, 10.1038/nature17676 Nik-Zainal, 2014, Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer, Nat. Genet., 46, 487, 10.1038/ng.2955 Nishida, 2016, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, 353, 10.1126/science.aaf8729 Noguchi, 2005, G to A hypermutation of hepatitis B virus, Hepatology, 41, 626, 10.1002/hep.20580 Nordentoft, 2014, Mutational context and diverse clonal development in early and late bladder cancer, Cell Rep., 7, 1649, 10.1016/j.celrep.2014.04.038 O'Hare, 2007, Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia, Blood, 110, 2242, 10.1182/blood-2007-03-066936 Okuyama, 2012, Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis, Int. J. Cancer, 130, 1294, 10.1002/ijc.26114 Orthwein, 2010, Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90, J. Exp. Med., 207, 2751, 10.1084/jem.20101321 Paquet, 2016, Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9, Nature, 533, 125, 10.1038/nature17664 Periyasamy, 2015, APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer, Cell Rep., 13, 108, 10.1016/j.celrep.2015.08.066 Pham, 2003, Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation, Nature, 424, 103, 10.1038/nature01760 Pinder, 2015, Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing, Nucleic Acids Res., 43, 9379, 10.1093/nar/gkv993 Pinto, 2016, Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity, Genome Res., 26, 579, 10.1101/gr.199240.115 Prochnow, 2007, The APOBEC-2 crystal structure and functional implications for the deaminase AID, Nature, 445, 447, 10.1038/nature05492 Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022 Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021 Rathore, 2013, The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution, J. Mol. Biol., 425, 4442, 10.1016/j.jmb.2013.07.040 Rees, 2017, Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery, Nat. Commun., 8, 15790, 10.1038/ncomms15790 Ren, 2014, Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila, Cell Rep., 9, 1151, 10.1016/j.celrep.2014.09.044 Revy, 2000, Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell, 102, 565, 10.1016/S0092-8674(00)00079-9 Richardson, 2016, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat. Biotechnol., 34, 339, 10.1038/nbt.3481 Richardson, 2014, APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition, eLife, 3, e02008, 10.7554/eLife.02008 Robert, 2015, Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing, Genome Med., 7, 93, 10.1186/s13073-015-0215-6 Roberts, 2014, Hypermutation in human cancer genomes: footprints and mechanisms, Nat. Rev. Cancer, 14, 786, 10.1038/nrc3816 Roberts, 2013, An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers, Nat. Genet., 45, 970, 10.1038/ng.2702 Roberts, 2012, Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions, Mol. Cell, 46, 424, 10.1016/j.molcel.2012.03.030 Rogozin, 2005, APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis, Cell Cycle, 4, 1281, 10.4161/cc.4.9.1994 Rosenberg, 2011, Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs, Nat. Struct. Mol. Biol., 18, 230, 10.1038/nsmb.1975 Rosler, 2005, APOBEC-mediated interference with hepadnavirus production, Hepatology, 42, 301, 10.1002/hep.20801 Russell, 2009, Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif, J. Virol., 83, 1992, 10.1128/JVI.01621-08 Russell, 2005, Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors, J. Virol., 79, 8724, 10.1128/JVI.79.14.8724-8731.2005 Salter, 2016, The APOBEC protein family: united by structure, divergent in function, Trends Biochem. Sci., 41, 578, 10.1016/j.tibs.2016.05.001 Salter, 2014, Structural insights for HIV-1 therapeutic strategies targeting Vif, Trends Biochem. Sci., 39, 373, 10.1016/j.tibs.2014.07.001 Sasada, 2005, APOBEC3G targets human T-cell leukemia virus type 1, Retrovirology, 2, 32, 10.1186/1742-4690-2-32 Sato, 2010, Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy, J. Biol. Chem., 285, 7111, 10.1074/jbc.M109.052977 Schafer, 2004, Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor, Virology, 328, 163, 10.1016/j.virol.2004.08.006 Schrader, 2009, The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch, Philos. Trans. R. Soc. Lond B Biol. Sci., 364, 645, 10.1098/rstb.2008.0200 Schrofelbauer, 2004, A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif), Proc. Natl. Acad. Sci. U. S. A., 101, 3927, 10.1073/pnas.0307132101 Schumacher, 2005, APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast, Proc. Natl. Acad. Sci. U. S. A., 102, 9854, 10.1073/pnas.0501694102 Schumann, 2015, Generation of knock-in primary human T cells using Cas9 ribonucleoproteins, Proc. Natl. Acad. Sci. U. S. A., 112, 10437, 10.1073/pnas.1512503112 Seplyarskiy, 2016, APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication, Genome Res., 26, 174, 10.1101/gr.197046.115 Shaban, 2016, 1.92 angstrom zinc-free APOBEC3F catalytic domain crystal structure, J. Mol. Biol., 428, 2307, 10.1016/j.jmb.2016.04.026 Shandilya, 2010, Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces, Structure, 18, 28, 10.1016/j.str.2009.10.016 Sheehy, 2002, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, 418, 646, 10.1038/nature00939 Sheehy, 2003, The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif, Nat. Med., 9, 1404, 10.1038/nm945 Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857 Shi, 2017, Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B, Nat. Struct. Mol. Biol., 24, 131, 10.1038/nsmb.3344 Shi, 2015, Crystal structure of the DNA deaminase APOBEC3B catalytic domain, J. Biol. Chem., 290, 28120, 10.1074/jbc.M115.679951 Shimatani, 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nat. Biotechnol., 35, 441, 10.1038/nbt.3833 Shindo, 2003, The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity, J. Biol. Chem., 278, 44412, 10.1074/jbc.C300376200 Siu, 2013, Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F, Nat. Commun., 4, 2593, 10.1038/ncomms3593 Skourti-Stathaki, 2014, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, Genes Dev., 28, 1384, 10.1101/gad.242990.114 Smith, 2010, Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif, J. Virol., 84, 12599, 10.1128/JVI.01437-10 Song, 2016, RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency, Nat. Commun., 7, 10548, 10.1038/ncomms10548 Starrett, 2016, The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis, Nat. Commun., 7, 12918, 10.1038/ncomms12918 Stenglein, 2006, APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism, J. Biol. Chem., 281, 16837, 10.1074/jbc.M602367200 Stephens, 2005, A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer, Nat. Genet., 37, 590, 10.1038/ng1571 Stopak, 2003, HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol. Cell, 12, 591, 10.1016/S1097-2765(03)00353-8 Suspene, 2011, Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism, Proc. Natl. Acad. Sci. U. S. A., 108, 4858, 10.1073/pnas.1009687108 Suspene, 2005, Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A., 102, 8321, 10.1073/pnas.0408223102 Taylor, 2013, DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis, eLife, 2, e00534, 10.7554/eLife.00534 Taylor, 2014, Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes, eLife, 3, e03553, 10.7554/eLife.03553 Teng, 1993, Molecular cloning of an apolipoprotein B messenger RNA editing protein, Science, 260, 1816, 10.1126/science.8511591 Tsai, 2014, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569, 10.1038/nbt.2908 Turelli, 2004, Inhibition of hepatitis B virus replication by APOBEC3G, Science, 303, 1829, 10.1126/science.1092066 Vartanian, 2008, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions, Science, 320, 230, 10.1126/science.1153201 Verhalen, 2016, Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses, J. Virol., 90, 6379, 10.1128/JVI.00771-16 Vojta, 2016, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic Acids Res., 44, 5615, 10.1093/nar/gkw159 Walker, 2015, APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma, Nat. Commun., 6, 6997, 10.1038/ncomms7997 Walser, 2010, The mutational spectrum of non-CpG DNA varies with CpG content, Genome Res., 20, 875, 10.1101/gr.103283.109 Walser, 2008, CpG dinucleotides and the mutation rate of non-CpG DNA, Genome Res., 18, 1403, 10.1101/gr.076455.108 Wiegand, 2007, Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins, J. Virol., 81, 13694, 10.1128/JVI.01646-07 Wiegand, 2004, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J., 23, 2451, 10.1038/sj.emboj.7600246 Wilson, 2014, The dark side of DNA repair, eLife, 3, e03068, 10.7554/eLife.03068 Xiao, 2016, Crystal structures of APOBEC3G N-domain alone and its complex with DNA, Nat. Commun., 7, 12193, 10.1038/ncomms12193 Xu, 2016, A CRISPR-based approach for targeted DNA demethylation, Cell Discov., 2, 16009, 10.1038/celldisc.2016.9 Yang, 1997, Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing, Proc. Natl. Acad. Sci. U. S. A., 94, 13075, 10.1073/pnas.94.24.13075 Yu, 2015, Small molecules enhance CRISPR genome editing in pluripotent stem cells, Cell Stem Cell, 16, 142, 10.1016/j.stem.2015.01.003 Yu, 2004, APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication, J. Biol. Chem., 279, 53379, 10.1074/jbc.M408802200 Yu, 2004, Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome, Nat. Struct. Mol. Biol., 11, 435, 10.1038/nsmb758 Yu, 2003, Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science, 302, 1056, 10.1126/science.1089591 Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052 Zhang, 2003, The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature, 424, 94, 10.1038/nature01707 Zhang, 2017, Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system, Nat. Commun., 8, 118, 10.1038/s41467-017-00175-6 Zheng, 2016, Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma, Proc. Natl. Acad. Sci. U. S. A., 113, 11283, 10.1073/pnas.1607606113 Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166 Zong, 2017, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol., 35, 438, 10.1038/nbt.3811