APOBEC: From mutator to editor
Tài liệu tham khảo
Ahasan, 2015, APOBEC3A and 3C decrease human papillomavirus 16 pseudovirion infectivity, Biochem. Biophys. Res. Commun., 457, 295, 10.1016/j.bbrc.2014.12.103
Alexandrov, 2016, Mutational signatures associated with tobacco smoking in human cancer, Science, 354, 618, 10.1126/science.aag0299
Alexandrov, 2013, Signatures of mutational processes in human cancer, Nature, 500, 415, 10.1038/nature12477
Balakrishnan, 2013, Okazaki fragment metabolism, Cold Spring Harb. Perspect. Biol., 5, 10.1101/cshperspect.a010173
Barnes, 2004, Repair and genetic consequences of endogenous DNA base damage in mammalian cells, Annu. Rev. Genet., 38, 445, 10.1146/annurev.genet.38.072902.092448
Benayoun, 2015, Epigenetic regulation of ageing: linking environmental inputs to genomic stability, Nat. Rev. Mol. Cell Biol., 16, 593, 10.1038/nrm4048
Bishop, 2004, Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr. Biol., 14, 1392, 10.1016/j.cub.2004.06.057
Blanc, 2003, A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling, J. Biol. Chem., 278, 41198, 10.1074/jbc.M302951200
Bogerd, 2004, A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor, Proc. Natl. Acad. Sci. U. S. A., 101, 3770, 10.1073/pnas.0307713101
Bohn, 2013, Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain, Structure, 21, 1042, 10.1016/j.str.2013.04.010
Bohn, 2015, The ssDNA mutator APOBEC3A is regulated by cooperative dimerization, Structure, 23, 903, 10.1016/j.str.2015.03.016
Bransteitter, 2003, Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase, Proc. Natl. Acad. Sci. U. S. A., 100, 4102, 10.1073/pnas.0730835100
Burns, 2013, APOBEC3B is an enzymatic source of mutation in breast cancer, Nature, 494, 366, 10.1038/nature11881
Burns, 2013, Evidence for APOBEC3B mutagenesis in multiple human cancers, Nat. Genet., 45, 977, 10.1038/ng.2701
Byeon, 2013, NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity, Nat. Commun., 4, 1890, 10.1038/ncomms2883
Byeon, 2016, Nuclear magnetic resonance structure of the APOBEC3B catalytic domain: structural basis for substrate binding and DNA deaminase activity, Biochemistry, 55, 2944, 10.1021/acs.biochem.6b00382
Caglayan, 2015, Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair, DNA Repair, 35, 85, 10.1016/j.dnarep.2015.09.010
Caval, 2014, A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage, Nat. Commun., 5, 5129, 10.1038/ncomms6129
Ceccaldi, 2016, Repair pathway choices and consequences at the double-strand break, Trends Cell Biol., 26, 52, 10.1016/j.tcb.2015.07.009
Cescon, 2015, APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation, Proc. Natl. Acad. Sci. U. S. A., 112, 2841, 10.1073/pnas.1424869112
Chan, 2015, An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers, Nat. Genet., 47, 1067, 10.1038/ng.3378
Chan, 2012, Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent, PLoS Genet., 8, e1003149, 10.1371/journal.pgen.1003149
Chan, 1997, Apobec-1 and apolipoprotein B mRNA editing, Biochim. Biophys. Acta, 1345, 11, 10.1016/S0005-2760(96)00156-7
Chelico, 2006, APOBEC3G DNA deaminase acts processively 3′→5′ on single-stranded DNA, Nat. Struct. Mol. Biol., 13, 392, 10.1038/nsmb1086
Chen, 2013, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, 155, 1479, 10.1016/j.cell.2013.12.001
Chen, 2006, APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons, Curr. Biol., 16, 480, 10.1016/j.cub.2006.01.031
Chen, 2015, Breaking bad: the mutagenic effect of DNA repair, DNA Repair, 32, 43, 10.1016/j.dnarep.2015.04.012
Chen, 2014, Repair of naturally occurring mismatches can induce mutations in flanking DNA, eLife, 3, e02001, 10.7554/eLife.02001
Chen, 2008, Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G, Nature, 452, 116, 10.1038/nature06638
Chen, 2016, The in vitro biochemical characterization of an HIV-1 restriction factor APOBEC3F: importance of Loop 7 on both CD1 and CD2 for DNA binding and deamination, J. Mol. Biol., 428, 2661, 10.1016/j.jmb.2016.03.031
Chu, 2015, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543, 10.1038/nbt.3198
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Conticello, 2003, The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G, Curr. Biol., 13, 2009, 10.1016/j.cub.2003.10.034
Conticello, 2005, Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases, Mol. Biol. Evol., 22, 367, 10.1093/molbev/msi026
Cox, 2015, Therapeutic genome editing: prospects and challenges, Nat. Med., 21, 121, 10.1038/nm.3793
Cyranoski, 2016, Chinese scientists to pioneer first human CRISPR trial, Nature, 535, 476, 10.1038/nature.2016.20302
Cyranoski, 2016, CRISPR gene-editing tested in a person for the first time, Nature, 539, 479, 10.1038/nature.2016.20988
Dang, 2006, Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family, J. Virol., 80, 10522, 10.1128/JVI.01123-06
Davidson, 1995, Apolipoprotein B messenger RNA editing: insights into the molecular regulation of post-transcriptional cytidine deamination, Curr. Opin. Lipidol., 6, 70, 10.1097/00041433-199504000-00002
Doehle, 2005, Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif, Virology, 339, 281, 10.1016/j.virol.2005.06.005
Dutko, 2005, Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases, Curr. Biol., 15, 661, 10.1016/j.cub.2005.02.051
Esnault, 2005, APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses, Nature, 433, 430, 10.1038/nature03238
Etard, 2010, Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos, J. Cell Biol., 189, 527, 10.1083/jcb.200912125
Faltas, 2016, Clonal evolution of chemotherapy-resistant urothelial carcinoma, Nat. Genet., 48, 1490, 10.1038/ng.3692
Furukawa, 2009, Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G, EMBO J., 28, 440, 10.1038/emboj.2008.290
Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029
Gooch, 2008, Functional domain organization of human APOBEC3G, Virology, 379, 118, 10.1016/j.virol.2008.06.013
Greenman, 2007, Patterns of somatic mutation in human cancer genomes, Nature, 446, 153, 10.1038/nature05610
Greider, 1999, Telomeres do D-loop-T-loop, Cell, 97, 419, 10.1016/S0092-8674(00)80750-3
Haradhvala, 2016, Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair, Cell, 164, 538, 10.1016/j.cell.2015.12.050
Harjes, 2009, An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model, J. Mol. Biol., 389, 819, 10.1016/j.jmb.2009.04.031
Harris, 2003, DNA deamination mediates innate immunity to retroviral infection, Cell, 113, 803, 10.1016/S0092-8674(03)00423-9
Harris, 2015, APOBECs and virus restriction, Virology, 479–480, 131, 10.1016/j.virol.2015.03.012
Harris, 2004, Retroviral restriction by APOBEC proteins, Nat. Rev. Immunol., 4, 868, 10.1038/nri1489
Harris, 2002, RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators, Mol. Cell, 10, 1247, 10.1016/S1097-2765(02)00742-6
Hasler, 2011, Cytoplasmic activation-induced cytidine deaminase (AID) exists in stoichiometric complex with translation elongation factor 1alpha (eEF1A), Proc. Natl. Acad. Sci. U. S. A., 108, 18366, 10.1073/pnas.1106729108
Henderson, 2014, APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development, Cell Rep., 7, 1833, 10.1016/j.celrep.2014.05.012
Hess, 2016, Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells, Nat. Methods, 13, 1036, 10.1038/nmeth.4038
Holden, 2008, Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications, Nature, 456, 121, 10.1038/nature07357
Hoopes, 2016, APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication, Cell Rep., 14, 1273, 10.1016/j.celrep.2016.01.021
Hulme, 2007, Selective inhibition of Alu retrotransposition by APOBEC3G, Gene, 390, 199, 10.1016/j.gene.2006.08.032
Hultquist, 2011, Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1, J. Virol., 85, 11220, 10.1128/JVI.05238-11
Huthoff, 2009, RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1, PLoS Pathog., 5, e1000330, 10.1371/journal.ppat.1000330
Huthoff, 2007, Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation, J. Virol., 81, 3807, 10.1128/JVI.02795-06
Ito, 2004, Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc. Natl. Acad. Sci. U. S. A., 101, 1975, 10.1073/pnas.0307335101
Jarmuz, 2002, An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, 79, 285, 10.1006/geno.2002.6718
Jiang, 2016, Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage, Science, 351, 867, 10.1126/science.aad8282
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Kanu, 2016, DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer, Genome Biol., 17, 185, 10.1186/s13059-016-1042-9
Kazanov, 2015, APOBEC-induced cancer mutations are uniquely enriched in early-replicating, gene-dense, and active chromatin regions, Cell Rep., 13, 1103, 10.1016/j.celrep.2015.09.077
Kim, 2017, Genome-wide target specificities of CRISPR RNA-guided programmable deaminases, Nat. Biotechnol., 35, 475, 10.1038/nbt.3852
Kim, 2017, Highly efficient RNA-guided base editing in mouse embryos, Nat. Biotechnol., 35, 435, 10.1038/nbt.3816
Kim, 2017, Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions, Nat. Biotechnol., 35, 371, 10.1038/nbt.3803
Kinomoto, 2007, All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition, Nucleic Acids Res., 35, 2955, 10.1093/nar/gkm181
Kinoshita, 2001, Linking class-switch recombination with somatic hypermutation, Nat. Rev. Mol. Cell Biol., 2, 493, 10.1038/35080033
Kitamura, 2012, The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat, Struct. Mol. Biol., 19, 1005, 10.1038/nsmb.2378
Kock, 2008, Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H, J. Gen. Virol., 89, 1184, 10.1099/vir.0.83507-0
Komor, 2017, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, 168, 20, 10.1016/j.cell.2016.10.044
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136
Kuscu, 2017, CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations, Nat. Methods, 14, 710, 10.1038/nmeth.4327
Landrum, 2014, ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res., 42, D980, 10.1093/nar/gkt1113
Lecossier, 2003, Hypermutation of HIV-1 DNA in the absence of the Vif protein, Science, 300, 1112, 10.1126/science.1083338
Leonard, 2013, APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma, Cancer Res., 73, 7222, 10.1158/0008-5472.CAN-13-1753
Li, 2012, First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G, ACS Chem. Biol., 7, 506, 10.1021/cb200440y
Liang, 2017, Effective gene editing by high-fidelity base editor 2 in mouse zygotes, Protein Cell, 8, 601, 10.1007/s13238-017-0418-2
Liao, 1999, APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family, Biochem. Biophys. Res. Commun., 260, 398, 10.1006/bbrc.1999.0925
Liddament, 2004, APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo, Curr. Biol., 14, 1385, 10.1016/j.cub.2004.06.050
Liu, 2016, Editing DNA methylation in the mammalian genome, Cell, 167, 233, 10.1016/j.cell.2016.08.056
Long, 2013, A common deletion in the APOBEC3 genes and breast cancer risk, J. Natl. Cancer Inst., 105, 573, 10.1093/jnci/djt018
Lu, 2015, Crystal structure of DNA cytidine deaminase ABOBEC3G catalytic deamination domain suggests a binding mode of full-length enzyme to single-stranded DNA, J. Biol. Chem., 290, 4010, 10.1074/jbc.M114.624262
Lu, 2017, Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system, Mol. Plant, 10, 523, 10.1016/j.molp.2016.11.013
Luo, 2007, Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation, J. Virol., 81, 7238, 10.1128/JVI.02584-06
Ma, 2016, Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow, Nat. Biotechnol., 34, 528, 10.1038/nbt.3526
Ma, 2016, Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells, Nat. Methods, 13, 1029, 10.1038/nmeth.4027
Maciejowski, 2015, Chromothripsis and kataegis induced by telomere crisis, Cell, 163, 1641, 10.1016/j.cell.2015.11.054
Mali, 2013, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol., 31, 833, 10.1038/nbt.2675
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Mangeat, 2003, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, 424, 99, 10.1038/nature01709
Mariani, 2003, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, 114, 21, 10.1016/S0092-8674(03)00515-4
Marin, 2008, Human immunodeficiency virus type 1 Vif functionally interacts with diverse APOBEC3 cytidine deaminases and moves with them between cytoplasmic sites of mRNA metabolism, J. Virol., 82, 987, 10.1128/JVI.01078-07
Marino, 2016, APOBEC4 enhances the replication of HIV-1, PLoS One, 11, e0155422, 10.1371/journal.pone.0155422
Maruyama, 2015, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nat. Biotechnol., 33, 538, 10.1038/nbt.3190
Mbisa, 2007, Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration, J. Virol., 81, 7099, 10.1128/JVI.00272-07
Mehta, 2000, Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA, Mol. Cell Biol., 20, 1846, 10.1128/MCB.20.5.1846-1854.2000
Middlebrooks, 2016, Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors, Nat. Genet., 48, 1330, 10.1038/ng.3670
Mikl, 2005, Mice deficient in APOBEC2 and APOBEC3, Mol. Cell Biol., 25, 7270, 10.1128/MCB.25.16.7270-7277.2005
Minegishi, 2000, Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome, Clin. Immunol., 97, 203, 10.1006/clim.2000.4956
Morganella, 2016, The topography of mutational processes in breast cancer genomes, Nat. Commun., 7, 11383, 10.1038/ncomms11383
Morita, 2016, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol., 34, 1060, 10.1038/nbt.3658
Mukhopadhyay, 2002, C→U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme, Am. J. Hum. Genet., 70, 38, 10.1086/337952
Muramatsu, 2000, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, 102, 553, 10.1016/S0092-8674(00)00078-7
Muramatsu, 1999, Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells, J. Biol. Chem., 274, 18470, 10.1074/jbc.274.26.18470
Nakamura, 2015, Genomic spectra of biliary tract cancer, Nat. Genet., 47, 1003, 10.1038/ng.3375
Nakashima, 2015, Structural insights into HIV-1 Vif-APOBEC3F interaction, J. Virol., 90, 1034, 10.1128/JVI.02369-15
Narvaiza, 2009, Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase, PLoS Pathog., 5, e1000439, 10.1371/journal.ppat.1000439
Navarro, 2005, Complementary function of the two catalytic domains of APOBEC3G, Virology, 333, 374, 10.1016/j.virol.2005.01.011
Newman, 2005, Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity, Curr. Biol., 15, 166, 10.1016/j.cub.2004.12.068
Nik-Zainal, 2012, Mutational processes molding the genomes of 21 breast cancers, Cell, 149, 979, 10.1016/j.cell.2012.04.024
Nik-Zainal, 2016, Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, 534, 47, 10.1038/nature17676
Nik-Zainal, 2014, Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer, Nat. Genet., 46, 487, 10.1038/ng.2955
Nishida, 2016, Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems, Science, 353, 10.1126/science.aaf8729
Noguchi, 2005, G to A hypermutation of hepatitis B virus, Hepatology, 41, 626, 10.1002/hep.20580
Nordentoft, 2014, Mutational context and diverse clonal development in early and late bladder cancer, Cell Rep., 7, 1649, 10.1016/j.celrep.2014.04.038
O'Hare, 2007, Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia, Blood, 110, 2242, 10.1182/blood-2007-03-066936
Okuyama, 2012, Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis, Int. J. Cancer, 130, 1294, 10.1002/ijc.26114
Orthwein, 2010, Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90, J. Exp. Med., 207, 2751, 10.1084/jem.20101321
Paquet, 2016, Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9, Nature, 533, 125, 10.1038/nature17664
Periyasamy, 2015, APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer, Cell Rep., 13, 108, 10.1016/j.celrep.2015.08.066
Pham, 2003, Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation, Nature, 424, 103, 10.1038/nature01760
Pinder, 2015, Nuclear domain ‘knock-in’ screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing, Nucleic Acids Res., 43, 9379, 10.1093/nar/gkv993
Pinto, 2016, Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity, Genome Res., 26, 579, 10.1101/gr.199240.115
Prochnow, 2007, The APOBEC-2 crystal structure and functional implications for the deaminase AID, Nature, 445, 447, 10.1038/nature05492
Qi, 2013, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, 152, 1173, 10.1016/j.cell.2013.02.022
Ran, 2013, Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 154, 1380, 10.1016/j.cell.2013.08.021
Rathore, 2013, The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution, J. Mol. Biol., 425, 4442, 10.1016/j.jmb.2013.07.040
Rees, 2017, Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery, Nat. Commun., 8, 15790, 10.1038/ncomms15790
Ren, 2014, Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila, Cell Rep., 9, 1151, 10.1016/j.celrep.2014.09.044
Revy, 2000, Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell, 102, 565, 10.1016/S0092-8674(00)00079-9
Richardson, 2016, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat. Biotechnol., 34, 339, 10.1038/nbt.3481
Richardson, 2014, APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition, eLife, 3, e02008, 10.7554/eLife.02008
Robert, 2015, Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing, Genome Med., 7, 93, 10.1186/s13073-015-0215-6
Roberts, 2014, Hypermutation in human cancer genomes: footprints and mechanisms, Nat. Rev. Cancer, 14, 786, 10.1038/nrc3816
Roberts, 2013, An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers, Nat. Genet., 45, 970, 10.1038/ng.2702
Roberts, 2012, Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions, Mol. Cell, 46, 424, 10.1016/j.molcel.2012.03.030
Rogozin, 2005, APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis, Cell Cycle, 4, 1281, 10.4161/cc.4.9.1994
Rosenberg, 2011, Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs, Nat. Struct. Mol. Biol., 18, 230, 10.1038/nsmb.1975
Rosler, 2005, APOBEC-mediated interference with hepadnavirus production, Hepatology, 42, 301, 10.1002/hep.20801
Russell, 2009, Distinct domains within APOBEC3G and APOBEC3F interact with separate regions of human immunodeficiency virus type 1 Vif, J. Virol., 83, 1992, 10.1128/JVI.01621-08
Russell, 2005, Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors, J. Virol., 79, 8724, 10.1128/JVI.79.14.8724-8731.2005
Salter, 2016, The APOBEC protein family: united by structure, divergent in function, Trends Biochem. Sci., 41, 578, 10.1016/j.tibs.2016.05.001
Salter, 2014, Structural insights for HIV-1 therapeutic strategies targeting Vif, Trends Biochem. Sci., 39, 373, 10.1016/j.tibs.2014.07.001
Sasada, 2005, APOBEC3G targets human T-cell leukemia virus type 1, Retrovirology, 2, 32, 10.1186/1742-4690-2-32
Sato, 2010, Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy, J. Biol. Chem., 285, 7111, 10.1074/jbc.M109.052977
Schafer, 2004, Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor, Virology, 328, 163, 10.1016/j.virol.2004.08.006
Schrader, 2009, The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch, Philos. Trans. R. Soc. Lond B Biol. Sci., 364, 645, 10.1098/rstb.2008.0200
Schrofelbauer, 2004, A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif), Proc. Natl. Acad. Sci. U. S. A., 101, 3927, 10.1073/pnas.0307132101
Schumacher, 2005, APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast, Proc. Natl. Acad. Sci. U. S. A., 102, 9854, 10.1073/pnas.0501694102
Schumann, 2015, Generation of knock-in primary human T cells using Cas9 ribonucleoproteins, Proc. Natl. Acad. Sci. U. S. A., 112, 10437, 10.1073/pnas.1512503112
Seplyarskiy, 2016, APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication, Genome Res., 26, 174, 10.1101/gr.197046.115
Shaban, 2016, 1.92 angstrom zinc-free APOBEC3F catalytic domain crystal structure, J. Mol. Biol., 428, 2307, 10.1016/j.jmb.2016.04.026
Shandilya, 2010, Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces, Structure, 18, 28, 10.1016/j.str.2009.10.016
Sheehy, 2002, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, 418, 646, 10.1038/nature00939
Sheehy, 2003, The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif, Nat. Med., 9, 1404, 10.1038/nm945
Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857
Shi, 2017, Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B, Nat. Struct. Mol. Biol., 24, 131, 10.1038/nsmb.3344
Shi, 2015, Crystal structure of the DNA deaminase APOBEC3B catalytic domain, J. Biol. Chem., 290, 28120, 10.1074/jbc.M115.679951
Shimatani, 2017, Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion, Nat. Biotechnol., 35, 441, 10.1038/nbt.3833
Shindo, 2003, The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity, J. Biol. Chem., 278, 44412, 10.1074/jbc.C300376200
Siu, 2013, Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F, Nat. Commun., 4, 2593, 10.1038/ncomms3593
Skourti-Stathaki, 2014, A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression, Genes Dev., 28, 1384, 10.1101/gad.242990.114
Smith, 2010, Identification of specific determinants of human APOBEC3F, APOBEC3C, and APOBEC3DE and African green monkey APOBEC3F that interact with HIV-1 Vif, J. Virol., 84, 12599, 10.1128/JVI.01437-10
Song, 2016, RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency, Nat. Commun., 7, 10548, 10.1038/ncomms10548
Starrett, 2016, The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis, Nat. Commun., 7, 12918, 10.1038/ncomms12918
Stenglein, 2006, APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism, J. Biol. Chem., 281, 16837, 10.1074/jbc.M602367200
Stephens, 2005, A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer, Nat. Genet., 37, 590, 10.1038/ng1571
Stopak, 2003, HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol. Cell, 12, 591, 10.1016/S1097-2765(03)00353-8
Suspene, 2011, Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism, Proc. Natl. Acad. Sci. U. S. A., 108, 4858, 10.1073/pnas.1009687108
Suspene, 2005, Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A., 102, 8321, 10.1073/pnas.0408223102
Taylor, 2013, DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis, eLife, 2, e00534, 10.7554/eLife.00534
Taylor, 2014, Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes, eLife, 3, e03553, 10.7554/eLife.03553
Teng, 1993, Molecular cloning of an apolipoprotein B messenger RNA editing protein, Science, 260, 1816, 10.1126/science.8511591
Tsai, 2014, Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing, Nat. Biotechnol., 32, 569, 10.1038/nbt.2908
Turelli, 2004, Inhibition of hepatitis B virus replication by APOBEC3G, Science, 303, 1829, 10.1126/science.1092066
Vartanian, 2008, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions, Science, 320, 230, 10.1126/science.1153201
Verhalen, 2016, Functional upregulation of the DNA cytosine deaminase APOBEC3B by polyomaviruses, J. Virol., 90, 6379, 10.1128/JVI.00771-16
Vojta, 2016, Repurposing the CRISPR-Cas9 system for targeted DNA methylation, Nucleic Acids Res., 44, 5615, 10.1093/nar/gkw159
Walker, 2015, APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma, Nat. Commun., 6, 6997, 10.1038/ncomms7997
Walser, 2010, The mutational spectrum of non-CpG DNA varies with CpG content, Genome Res., 20, 875, 10.1101/gr.103283.109
Walser, 2008, CpG dinucleotides and the mutation rate of non-CpG DNA, Genome Res., 18, 1403, 10.1101/gr.076455.108
Wiegand, 2007, Inhibition of alpharetrovirus replication by a range of human APOBEC3 proteins, J. Virol., 81, 13694, 10.1128/JVI.01646-07
Wiegand, 2004, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J., 23, 2451, 10.1038/sj.emboj.7600246
Wilson, 2014, The dark side of DNA repair, eLife, 3, e03068, 10.7554/eLife.03068
Xiao, 2016, Crystal structures of APOBEC3G N-domain alone and its complex with DNA, Nat. Commun., 7, 12193, 10.1038/ncomms12193
Xu, 2016, A CRISPR-based approach for targeted DNA demethylation, Cell Discov., 2, 16009, 10.1038/celldisc.2016.9
Yang, 1997, Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing, Proc. Natl. Acad. Sci. U. S. A., 94, 13075, 10.1073/pnas.94.24.13075
Yu, 2015, Small molecules enhance CRISPR genome editing in pluripotent stem cells, Cell Stem Cell, 16, 142, 10.1016/j.stem.2015.01.003
Yu, 2004, APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication, J. Biol. Chem., 279, 53379, 10.1074/jbc.M408802200
Yu, 2004, Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome, Nat. Struct. Mol. Biol., 11, 435, 10.1038/nsmb758
Yu, 2003, Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science, 302, 1056, 10.1126/science.1089591
Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052
Zhang, 2003, The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature, 424, 94, 10.1038/nature01707
Zhang, 2017, Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system, Nat. Commun., 8, 118, 10.1038/s41467-017-00175-6
Zheng, 2016, Whole-exome sequencing identifies multiple loss-of-function mutations of NF-kappaB pathway regulators in nasopharyngeal carcinoma, Proc. Natl. Acad. Sci. U. S. A., 113, 11283, 10.1073/pnas.1607606113
Zhou, 2014, High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells, Nature, 509, 487, 10.1038/nature13166
Zong, 2017, Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion, Nat. Biotechnol., 35, 438, 10.1038/nbt.3811