ANALYZING THE GENOMIC VARIATION OF MICROBIAL CELL FACTORIES IN THE ERA OF “NEW BIOTECHNOLOGY”

Computational and Structural Biotechnology Journal - Tập 3 - Trang e201210012 - 2012
Markus Herrgård1, Gianni Panagiotou2,3
1Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
2Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
3School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong

Tài liệu tham khảo

Andersen, 2011, Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88, Genome Res, 21, 885, 10.1101/gr.112169.110 Applebee, 2011, Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli, J. Biol. Chem., 286, 23150, 10.1074/jbc.M110.195305 Atsumi, 2010, Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli, Mol. Syst. Biol., 6, 449, 10.1038/msb.2010.98 Babrzadeh, 2012, Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1, Mol. Genet. Genomics., 287, 485, 10.1007/s00438-012-0695-7 Boyle, 2012, Tools for genome-wide strain design and construction, Current Opinion in Biotechnology, 10.1016/j.copbio.2012.01.012 Bro, 2004, Impact of “ome” analyses on inverse metabolic engineering, Metab. Eng., 6, 204, 10.1016/j.ymben.2003.11.005 Charusanti, 2012, Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction, PLoS ONE, 7, e33727, 10.1371/journal.pone.0033727 Conrad, 2010, RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media, Proc. Natl. Acad. Sci. U.S.A., 107, 20500, 10.1073/pnas.0911253107 Conrad, 2011, Microbial laboratory evolution in the era of genome-scale science, Mol. Syst. Biol., 7, 509, 10.1038/msb.2011.42 Ehrenreich, 2010, Dissection of genetically complex traits with extremely large pools of yeast segregants, Nature, 464, 1039, 10.1038/nature08923 Elena, 2003, Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation, Nat. Rev. Genet., 4, 457, 10.1038/nrg1088 Fong, 2005, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states, Genome Res, 15, 1365, 10.1101/gr.3832305 Francesconi, 2011, Integrated genome-scale prediction of detrimental mutations in transcription networks, PLoS Genet, 7, e1002077, 10.1371/journal.pgen.1002077 Hemme, 2011, Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields, Appl. Environ. Microbiol., 77, 7998, 10.1128/AEM.05677-11 Herring, 2006, Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale, Nat. Genet., 38, 1406, 10.1038/ng1906 Hong, 2011, Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis, Proc. Natl. Acad. Sci. U.S.A., 108, 12179, 10.1073/pnas.1103219108 van Hylckama Vlieg, 2006, Natural diversity and adaptive responses of Lactococcus lactis, Curr. Opin. Biotechnol., 17, 183, 10.1016/j.copbio.2006.02.007 Ibarra, 2002, Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth, Nature, 420, 186, 10.1038/nature01149 Jelier, 2011, Predicting phenotypic variation in yeast from individual genome sequences, Nat. Genet., 43, 1270, 10.1038/ng.1007 Kahvejian, 2008, What would you do if you could sequence everything? Nat, Biotechnol, 26, 1125 Karr, 2012, A whole-cell computational model predicts phenotype from genotype, Cell, 150, 389, 10.1016/j.cell.2012.05.044 Lee, 2010, Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a Nonnative carbon source, L-1,2-propanediol, Appl. Environ. Microbiol., 76, 4158, 10.1128/AEM.00373-10 Lerman, 2012, In silico method for modelling metabolism and gene product expression at genome scale, Nat. Commun., 3, 929, 10.1038/ncomms1928 Lewis, 2010, Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models, Mol. Syst. Biol., 6, 390, 10.1038/msb.2010.47 Lewis, 2012, Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods, Nat. Rev. Microbiol., 10, 291, 10.1038/nrmicro2737 Madsen, 2011, Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers, PLoS ONE, 6, e14763, 10.1371/journal.pone.0014763 Morozova, 2008, Applications of next-generation sequencing technologies in functional genomics, Genomics, 92, 255, 10.1016/j.ygeno.2008.07.001 Nijkamp, 2012, De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology, Microb Cell Fact, 11, 36, 10.1186/1475-2859-11-36 Otero, 2010, Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications, BMC Genomics, 11, 723, 10.1186/1471-2164-11-723 Oud, 2012, Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast, FEMS Yeast Res, 12, 183, 10.1111/j.1567-1364.2011.00776.x Patnaik, 2008, Engineering complex phenotypes in industrial strains, Biotechnol. Prog., 24, 38, 10.1021/bp0701214 Pretzer, 2005, Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum, J. Bacteriol., 187, 6128, 10.1128/JB.187.17.6128-6136.2005 Sandoval, 2012, Strategy for directing combinatorial genome engineering in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 109, 10540, 10.1073/pnas.1206299109 Sauer, 2001, Evolutionary engineering of industrially important microbial phenotypes, Adv. Biochem. Eng. Biotechnol., 73, 129 Shao, 2011, Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum, Appl. Microbiol. Biotechnol., 92, 641, 10.1007/s00253-011-3492-z Smit, 2004, Development of a high throughput screening method to test flavour-forming capabilities of anaerobic micro-organisms, J. Appl. Microbiol., 97, 306, 10.1111/j.1365-2672.2004.02295.x Smith, 2011, An evolutionary strategy for isobutanol production strain development in Escherichia coli, Metab. Eng., 13, 674, 10.1016/j.ymben.2011.08.004 Summers, 2012, Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator, ISME J, 6, 975, 10.1038/ismej.2011.166 Tenaillon, 2012, The molecular diversity of adaptive convergence, Science, 335, 457, 10.1126/science.1212986 Thiele, 2012, Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage, PLoS One, 7, e45635, 10.1371/journal.pone.0045635 Tyo, 2007, Expanding the metabolic engineering toolbox: more options to engineer cells, Trends Biotechnol, 25, 132, 10.1016/j.tibtech.2007.01.003 Wang, 2009, Programming cells by multiplex genome engineering and accelerated evolution, Nature, 460, 894, 10.1038/nature08187 Warner, 2009, Genomics enabled approaches in strain engineering, Curr. Opin. Microbiol., 12, 223, 10.1016/j.mib.2009.04.005 Zhang, 2011, Biosensors and their applications in microbial metabolic engineering, Trends Microbiol, 19, 323, 10.1016/j.tim.2011.05.003 Lee, 2008, Dynamic analysis of integrated signaling, metabolic, and regulatory networks, PLoS Comput. Biol., 23, e1000086