AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching

Nature - Tập 414 Số 6864 - Trang 660-665 - 2001
Simone Petersen1, Rafael Casellas2, Bernardo Reina-San-Martín2, Hua Tang Chen1, Michael J. Difilippantonio3, Patrick C. Wilson2, Leif G. Hanitsch2, Arkady Celeste1, Masamichi Muramatsuk4, Duane R. Pilch5, Christophe E. Redon5, Thomas Ried3, William M. Bonner5, Tasuku Honjo4, Michel C. Nussenzweig2, André Nussenzweig1
1Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
2Laboratory of Molecular Immunology, The Rockefeller University, and Howard Hughes Medical Institute, New York, New York 10021, USA.
3Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
4Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
5Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell. Biol. 146, 905–916 (1999).

Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

Li, M. J. et al. Rad51 expression and localization in B cells carrying out class switch recombination. Proc. Natl Acad. Sci. USA 93, 10222–10227 (1996).

Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000).

Chen, H. T. et al. Response to RAG-mediated V(D)J Cleavage by NBS1 and γ-H2AX. Science 290, 1962–1964 (2000).

Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998).

Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

Casellas, R. et al. Ku80 is required for immunoglobulin isotype switching. EMBO J. 17, 2404–2411 (1998).

Manis, J. P. et al. Ku70 is required for late B cell development and immunoglobulin heavy chain class switching. J. Exp. Med. 187, 2081–2089 (1998).

Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for Sµ-Sε heavy chain class switching. Immunity 5, 319–330 (1996).

Stavnezer-Nordgren, J. & Sirlin, S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 5, 95–102 (1986).

Yancopoulos, G. D. et al. Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J. 5, 3259–3266 (1986).

Barnes, W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl Acad. Sci. USA 91, 2216–2220 (1994).

Dunnick, W., Hertz, G. Z., Scappino, L. & Gritzmacher, C. DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21, 365–372 (1993).

Kinoshita, K. & Honjo, T. Linking class-switch recombination with somatic hypermutation. Nature Rev. Mol. Cell Biol. 2, 493–503 (2001).

Winter, E., Krawinkel, U. & Radbruch, A. Directed Ig class switch recombination in activated murine B cells. EMBO J. 6, 1663–1671 (1987).

Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

Dunnick, W., Wilson, M. & Stavnezer, J. Mutations, duplication, and deletion of recombined switch regions suggest a role for DNA replication in the immunoglobulin heavy-chain switch. Mol. Cell. Biol. 9, 1850–1856 (1989).

Bemark, M. et al. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PK(cs)) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192, 1509–1514 (2000).

Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).

Brenner, S. & Milstein, C. Origin of antibody variation. Nature 211, 242–243 (1966).

Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).