Dự đoán thông minh về bệnh lý lâm sàng dựa trên AI sử dụng trình phân loại rừng ngẫu nhiên và Naive Bayes

V. Jackins1, S. Vimal1, M. Kaliappan2, Mi Young Lee3
1Department of IT, National Engineering College, Kovilpatti, Tamil Nadu, India
2Department of Computer Science and Engineering, Ramco Institute of Technology, Rajapalayam, Tamilnadu, India
3Department of Software Sejong University, Seoul South Korea

Tóm tắt

Tóm tắt

Các hoạt động chăm sóc sức khỏe bao gồm việc thu thập tất cả các loại dữ liệu bệnh nhân nhằm giúp bác sĩ chẩn đoán đúng tình trạng sức khỏe của bệnh nhân. Những dữ liệu này có thể là các triệu chứng đơn giản được quan sát bởi đối tượng, chẩn đoán ban đầu của bác sĩ hoặc kết quả xét nghiệm chi tiết từ một phòng thí nghiệm. Do đó, những dữ liệu này chỉ được sử dụng để phân tích bởi bác sĩ, người sau đó xác định bệnh bằng chuyên môn y khoa cá nhân của mình. Trí tuệ nhân tạo đã được áp dụng với thuật toán phân loại Naive Bayes và thuật toán phân loại rừng ngẫu nhiên để phân loại nhiều tập dữ liệu bệnh như tiểu đường, bệnh tim và ung thư nhằm kiểm tra xem bệnh nhân có bị ảnh hưởng bởi bệnh đó hay không. Phân tích hiệu suất của dữ liệu bệnh đối với cả hai thuật toán được tính toán và so sánh. Kết quả của các mô phỏng cho thấy hiệu quả của các kỹ thuật phân loại trên một tập dữ liệu, cũng như bản chất và độ phức tạp của tập dữ liệu được sử dụng.

Từ khóa


Tài liệu tham khảo

Renjit JA, Shunmuganathan KL (2010) Distributed and coorperative multi-agent based intrusion detection system. Indian J Sci Technol 3(10):1070–1074

Priyadarshini R, Dash N, Mishra R (2014) A novel approach to predict diabetes mellitus using modified extreme learning machine. In: International Conference on Electronics and Communication Systems (ICECS), 2014, pp 1–5

. Sankaranarayanan S, Perumal TP (2014) Diabetic prognosis through data mining methods and techniques. In: International Conference on Intelligent Computing Applications, 2014, pp 162–166

Dahiwade D, Patle G, Meshram E (2019) Designing disease prediction model using machine learning approach. In: Third IEEE International Conference on Computing Methodologies and Communication (ICCMC), 2019

Geetha R, Sivasubramanian S, Kaliappan M et al (2019) Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier. J Med Syst 43:286. https://doi.org/10.1007/s10916-019-1402-6

Annamalai S, Udendhran R, Vimal S (2019) An intelligent grid network based on cloud computing infrastructures. Nov Pract Trends Grid Cloud Comput. https://doi.org/10.4018/978-1-5225-9023-1.ch005

Wu H, Yang S, Huang Z, He J, Wang X (2018) Type 2 diabetes mellitus prediction model based on data mining. Inform Med Unlocked 10:100–107

Sarwar A, Sharma V (2012) Intelligent Naïve Bayes approach to diagnose diabetes type-2. In: Special Issue of International Journal of Computer Applications on Issues and Challenges in Networking, Intelligence and Computing Technologies, November 2012

Pradeepa S, Manjula KR, Vimal S et al (2020) DRFS: detecting risk factor of stroke disease from social media using machine learning techniques. Neural Process Lett. https://doi.org/10.1007/s11063-020-10279-8

Kalaiselvi C, Nasira GM (2014) A new approach of diagnosis of diabetes and prediction of cancer using ANFIS. In: IEEE Computing and Communicating Technologies, 2014, pp 188–190

Robinson YH, Vimal S, Khari M, Hernández FCL, Crespo RG (2020) Tree-based convolutional neural networks for object classification in segmented satellite images. Int J High Perform Comput Appl. https://doi.org/10.1177/1094342020945026

Undre P, Kaur H, Patil P (2015) Improvement in prediction rate and accuracy of diabetic diagnosis system using fuzzy logic hybrid combination. In: International Conference on Pervasive Computing (ICPC), 2015, pp 1–4

Yi Y, Wu J, Xu W (2011) Incremental SVM based on reserved set for network intrusion detection. Elsevier J Expert Syst Appl 38(6):7698–7707

Ramamurthy M, Krishnamurthi I, Vimal S, Harold Y (2020) Robinson deep learning based genome analysis and NGS-RNA LL identification with a novel hybrid model. 197: 104211. https://doi.org/https://doi.org/10.1016/j.biosystems.2020.104211

Pradeepa S, Gayathri P, Nishmitha P, Vimal S, Oh-Young S, Usman T, Raheel N (2020) IoT based health-related topic recognition from emerging online health community: med help using machine learning technique. Electronics 9(9):1469

Babu S, Vivek EM, Famina KP, Fida K, AswathiP, Shanid M, Hena M (2017) Heart disease diagnosis using data mining technique. In: International Conference on Electronics, Communication, and Aerospace Technology, ICECA2017

Sampaul TGA, Robinson YH, Julie EG, Shanmuganathan V, Nam Y, Rho S (2020) Diabetic retinopathy diagnostics from retinal images based on deep convolutional networks. Preprints. https://doi.org/10.20944/preprints202005.0493.v1

Vimal S et al (2020) Deep learning-based decision-making with WoT for smart city development. In: Jain A, Crespo R, Khari M (eds) Smart innovation of web of things, CRC Press, Boca Raton, pp 51–62. https://doi.org/10.1201/9780429298462

Kumari M, Vohra R, Arora A (2014) Prediction of diabetes using Bayesian network. Int J Comput Sci Inf Technol (IJCSIT) 5(4):5174–5178

Krishnaiah V, Narsimha G, Chandra NS (2013) Diagnosis of lung cancer prediction system using data mining classification techniques. Int J Comput Sci Inf Technol 4(1):39–45

Long NC, Meesad P, Unger H (2015) A highly accurate firefly-based algorithm for heart disease prediction. Expert Syst Appl 42:8221–8231

Esteghamati A, Hafezi-Nejad N, Zandieh A, Sheikhbahaei S, Ebadi M, Nakhjavani M (2014) Homocysteine and metabolic syndrome: from clustering to additional utility in prediction of coronary heart disease. J Cardiol 64:290–296

Lee BJ, Kim JY (2016) Identification of type 2 diabetes risk factors using phenotypes consisting of anthropometry and triglycerides based on machine learning. IEEE J Biomed Health Inform 20(1):39–46

Wang Z, Srinivasan RS (2017) A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Elsevier J Renew Sustain Energy Rev 75:796–808

Lynch CM, Abdollahi B, Fuqua JD, de Carlo AR, Bartholomai JA, Balgemann RN, van Berkel VH, Frieboes HB (2017) Prediction of lung cancer patient survival via supervised machine learning classification techniques. Int J Med Inform 108:1–8

Veena Vijayan V, Anjali C (2015) Prediction and diagnosis of diabetes mellitus: a machine learning approach. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), December 2015

Ren F, Hu L, Liang H, Liu X, Ren W (2008) Using density-based incremental clustering for anomaly detection. In: International Conference on Computer and Software Engineering, IEEE, pp 986–989

Vimal S et al (2016) Secure data packet transmission in MANET using enhanced identity-based cryptography. Int J New Technol Sci Eng 3(12):35–42

Suresh A, Udendhran R, Vimal S (2020) Deep neural networks for multimodal imaging and biomedical applications. IGI Global, Hershey,. https://doi.org/10.4018/978-1-7998-3591-2

Nai-arna N, Moungmaia R (2015) Comparison of classifiers for the risk of diabetes prediction. In: 7th International Conference on Advances in Information Technology Procedia Computer Science, vol 69, pp 132 –142

Zhang Z, Shen H (2005) Application of online-training SVMs for real time intrusion detection with different considerations. Comput Commun 28(12):1428–1442