AI Applications through the Whole Life Cycle of Material Discovery

Matter - Tập 3 - Trang 393-432 - 2020
Jiali Li1, Kaizhuo Lim1, Haitao Yang1, Zekun Ren2, Shreyaa Raghavan3, Po-Yen Chen1, Tonio Buonassisi2,3, Xiaonan Wang1
1Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
2Singapore-MIT Alliance for Research and Technology SMART, Singapore 138602, Singapore
3Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Tài liệu tham khảo

Sass, 1998 Millard, 2017, Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening, Int. J. Nanomedicine, 12, 7993, 10.2147/IJN.S146927 Berrisford, 1995, Ligand-accelerated catalysis, Angew. Chem. Int. Ed., 34, 1059, 10.1002/anie.199510591 Chirik, 2010, Radical ligands confer nobility on base-metal catalysts, Science, 327, 794, 10.1126/science.1183281 Wright, 2012, Organic-inorganic hybrid solar cells: a comparative review, Sol. Energy Mater. Sol. Cells, 107, 87, 10.1016/j.solmat.2012.07.006 Amjadi, 2016, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review, Adv. Funct. Mater., 26, 1678, 10.1002/adfm.201504755 Chen, 2018, Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide, J. Am. Chem. Soc., 140, 7851, 10.1021/jacs.8b02798 Guo, 2016, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 351, 361, 10.1126/science.aad0832 Overington, 2006, How many drug targets are there?, Nat. Rev. Drug Discov., 5, 993, 10.1038/nrd2199 Yao, 2018, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 359, 1489, 10.1126/science.aan5412 Graser, 2018, Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons, Chem. Mater., 30, 3601, 10.1021/acs.chemmater.7b05304 Oliynyk, 2016, High-throughput machine-learning-driven synthesis of full-heusler compounds, Chem. Mater., 28, 7324, 10.1021/acs.chemmater.6b02724 Ryan, 2018, Crystal structure prediction via deep learning, J. Am. Chem. Soc., 140, 10158, 10.1021/jacs.8b03913 Butler, 2018, Machine learning for molecular and materials science, Nature, 559, 547, 10.1038/s41586-018-0337-2 Hachmann, 2011, The harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid, J. Phys. Chem. Lett., 2, 2241, 10.1021/jz200866s Jain, 2013, Commentary: the materials project: a materials Genome approach to accelerating materials innovation, APL Mater., 1, 011002, 10.1063/1.4812323 Calderon, 2015, The AFLOW standard for high-throughput materials science calculations, Comput. Mater. Sci., 108, 233, 10.1016/j.commatsci.2015.07.019 Oviedo, 2019, Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks, NPJ Comput. Mater., 5, 10.1038/s41524-019-0196-x Wang, 2020, Rapid identification of X-ray diffraction patterns based on very limited data by interpretable convolutional neural networks, J. Chem. Inf. Model., 60, 2004, 10.1021/acs.jcim.0c00020 Viswanathan, 2019, Single-crystal automated refinement (SCAR): a data-driven method for determining inorganic structures, Inorg. Chem., 58, 9004, 10.1021/acs.inorgchem.9b00344 Ly, 2019, A new approach for quantifying morphological features of U3O8 for nuclear forensics using a deep learning model, J. Nucl. Mater., 517, 128, 10.1016/j.jnucmat.2019.01.042 Gilmer, 2017, Neural message passing for quantum chemistry, Proc. 34th Int. Conf. Mach. Learn., 70, 1263 Borboudakis, 2017, Chemically intuited, large-scale screening of MOFs by machine learning techniques, NPJ Comput. Mater., 3 Meredig, 2014, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B, 89, 94104, 10.1103/PhysRevB.89.094104 Gaultois, 2016, Perspective: web-based machine learning models for real-time screening of thermoelectric materials properties, Apl Mater., 4, 53213, 10.1063/1.4952607 Balachandran, 2018, Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning, Nat. Commun., 9, 10.1038/s41467-018-03821-9 Raccuglia, 2016, Machine-learning-assisted materials discovery using failed experiments, Nature, 533, 73, 10.1038/nature17439 Kim, 2017, Materials synthesis insights from scientific literature via text extraction and machine learning, Chem. Mater., 29, 9436, 10.1021/acs.chemmater.7b03500 Yuan, 2018, Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning, Adv. Mater., 30, 10.1002/adma.201702884 Ren, 2020, Embedding physics domain knowledge into a bayesian network enables layer-by-layer process innovation for photovoltaics, NPJ Comput. Mater., 6 Lookman, 2019, Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design, NPJ Comput. Mater., 5, 10.1038/s41524-019-0153-8 Tabor, 2018, Accelerating the discovery of materials for clean energy in the era of smart automation, Nat. Rev. Mater., 3, 5, 10.1038/s41578-018-0005-z Kalinin, 2015, Big-deep-smart data in imaging for guiding materials design, Nat. Mater., 14, 973, 10.1038/nmat4395 Li, 2017, Application of artificial neural networks for catalysis: a review, Catalysts, 7, 306, 10.3390/catal7100306 Mitchell, 1997 Goodfellow, 2016, Chapter 5. Machine learning basics, 96 Li, 2018, Deep learning accelerated gold nanocluster synthesis, Adv. Intell. Syst., 1 Coley, 2017, Prediction of organic reaction outcomes using machine learning, ACS Cent. Sci., 3, 434, 10.1021/acscentsci.7b00064 Cubuk, 2015, Identifying structural flow defects in disordered solids using machine-learning methods, Phys. Rev. Lett., 114, 108001, 10.1103/PhysRevLett.114.108001 Kauwe, 2018, Machine learning prediction of heat capacity for solid inorganics, Integr. Mater. Manuf. Innov., 7, 43, 10.1007/s40192-018-0108-9 Zhuo, 2018, Identifying an efficient, thermally robust inorganic phosphor host via machine learning, Nat. Commun., 9, 10.1038/s41467-018-06625-z Dong, 2019, Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride, NPJ Comput. Mater., 5, 10.1038/s41524-019-0165-4 Grira, 2004, Unsupervised and semi-supervised clustering: a brief survey, 9 Celebi, 2014 Kaufman, 2009 Tshitoyan, 2019, Unsupervised word embeddings capture latent knowledge from materials science literature, Nature, 571, 95, 10.1038/s41586-019-1335-8 Kitahara, 2018, Microstructure cluster analysis with transfer learning and unsupervised learning, Integr. Mater. Manuf. Innov., 7, 148, 10.1007/s40192-018-0116-9 Cunningham, 2008, Dimension reduction, 91 Kasun, 2016, Dimension reduction with extreme learning machine, IEEE Trans. Image Process., 25, 3906, 10.1109/TIP.2016.2570569 Mardt, 2018, VAMPnets for deep learning of molecular kinetics, Nat. Commun., 9 Xie, 2019, Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials, Nat. Commun., 10, 2667, 10.1038/s41467-019-10663-6 Lee, 2016, Mapping membrane activity in undiscovered peptide sequence space using machine learning, Proc. Natl. Acad. Sci. U S A, 113, 13588, 10.1073/pnas.1609893113 Tran, 2018, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution, Nat. Catal., 1, 696, 10.1038/s41929-018-0142-1 Bassman, 2018, Active learning for accelerated design of layered materials, NPJ Comput. Mater., 4, 10.1038/s41524-018-0129-0 Talapatra, 2018, Autonomous efficient experiment design for materials discovery with bayesian model averaging, Phys. Rev. Mater., 2, 113803, 10.1103/PhysRevMaterials.2.113803 Matthews, 1975, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta, 405, 442, 10.1016/0005-2795(75)90109-9 Dudoit, 2002, A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biol., 3, 10.1186/gb-2002-3-7-research0036 Thalamuthu, 2006, Evaluation and comparison of gene clustering methods in microarray analysis, Bioinformatics, 22, 2405, 10.1093/bioinformatics/btl406 Wang, 2009, CVAP: validation for cluster analyses, Data Sci. J., 8, 88, 10.2481/dsj.007-020 Valle, 1999, Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods, Ind. Eng. Chem. Res., 38, 4389, 10.1021/ie990110i Shenai, 2012, Applications of principal component analysis (PCA) in materials science, 25 Noh, 2019, Inverse design of solid-state materials via a continuous representation, Matter, 1, 1370, 10.1016/j.matt.2019.08.017 Duvenaud, 2015, Convolutional networks on graphs for learning molecular fingerprints, 2215 Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Smola, 2004, A tutorial on support vector regression, Stat. Comput., 14, 199, 10.1023/B:STCO.0000035301.49549.88 Chorowski, 2014, Review and performance comparison of SVM-and ELM-based classifiers, Neurocomputing, 128, 507, 10.1016/j.neucom.2013.08.009 Schoenholz, 2016, A structural approach to relaxation in glassy liquids, Nat. Phys., 12, 469, 10.1038/nphys3644 Copp, 2018, Fluorescence color by data-driven design of genomic silver clusters, ACS Nano, 12, 10.1021/acsnano.8b03404 Granda, 2018, Controlling an organic synthesis robot with machine learning to search for new reactivity, Nature, 559, 377, 10.1038/s41586-018-0307-8 Murthy, 1998, Automatic construction of decision trees from data: a multi-disciplinary survey, Data Min. Knowl. Discov., 2, 345, 10.1023/A:1009744630224 Kotsiantis, 2013, Decision trees: a recent overview, Artif. Intell. Rev., 39, 261, 10.1007/s10462-011-9272-4 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Friedman, 2002, Stochastic gradient boosting, Comput. Stat. Data Anal., 38, 367, 10.1016/S0167-9473(01)00065-2 Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM, 2016; pp 785–794. Jain, 1996, Artificial neural networks: a tutorial, Comput. (Long. Beach. Calif)., 3, 31 Goodfellow, 2016, Chapter 6. Deep feedforward networks, 161 Hornik, 1989, Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359, 10.1016/0893-6080(89)90020-8 Montufar, 2014, On the number of linear regions of deep neural networks, 2924 Sanchez-Gonzalez, 2017, Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning, Nat. Commun., 8, 10.1038/ncomms15461 Cassar, 2018, Predicting glass transition temperatures using neural networks, Acta Mater., 159, 249, 10.1016/j.actamat.2018.08.022 Rawat, 2017, Deep convolutional neural networks for image classification: a comprehensive review, Neural Comput., 29, 2352, 10.1162/neco_a_00990 Goodfellow, 2016, Chapter 9. Convolutional networks, 326 Yu, 2014, Mixed pooling for convolutional neural networks, 364 Ziletti, 2018, Insightful classification of crystal structures using deep learning, Nat. Commun., 9, 10.1038/s41467-018-05169-6 Ziatdinov, 2017, Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations, ACS Nano, 11, 12742, 10.1021/acsnano.7b07504 Alldritt, 2020, Automated structure discovery in atomic force microscopy, Sci. Adv., 6, eaay6913, 10.1126/sciadv.aay6913 Scarselli, 2008, The graph neural network model, IEEE Trans. Neural Networks, 20, 61, 10.1109/TNN.2008.2005605 Altae-Tran, 2017, Low data drug discovery with one-shot learning, ACS Cent. Sci., 3, 283, 10.1021/acscentsci.6b00367 Lipton, 2015, A critical review of recurrent neural networks for sequence learning, arXiv Goodfellow, 2016, Chapter 10. Sequence modeling: recurrent and recursive nets, 367 Chung, 2015, Gated feedback recurrent neural networks, vol. 37, 2067 Quang, 2016, A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences, Nucleic Acids Res., 44, e107, 10.1093/nar/gkw226 Ripalda, 2018, Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations, Nat. Commun., 9, 10.1038/s41467-018-07431-3 Bro, 2014, Principal component analysis, Anal. Methods, 6, 2812, 10.1039/C3AY41907J Li, 2017, Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling, Nat. Commun., 8 Zahrt, 2019, Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning, Science, 363, eaau5631, 10.1126/science.aau5631 Goodfellow, 2016, Chapter 14. Autoencoders, 499 Olshausen, 1996, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381, 607, 10.1038/381607a0 Lee, 2007, Efficient sparse coding algorithms, 801 Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th International Conference on Machine Learning; ACM, 2008; pp 1096–1103. Doersch, 2016, Tutorial on variational autoencoders, arXiv Gómez-Bombarelli, 2018, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci., 4, 268, 10.1021/acscentsci.7b00572 Kim, 2017, Virtual screening of inorganic materials synthesis parameters with deep learning, NPJ Comput. Mater., 3, 10.1038/s41524-017-0055-6 van der Maaten, 2008, Visualizing data using T-SNE, J. Mach. Learn. Res., 9, 2579 Zhou, 2017, A brief introduction to weakly supervised learning, Natl. Sci. Rev., 5, 44, 10.1093/nsr/nwx106 Settles, 2009 Brochu, 2010, A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, arXiv Solomou, 2018, Multi-objective Bayesian materials discovery: application on the discovery of precipitation strengthened NiTi shape memory alloys through micromechanical modeling, Mater. Des., 160, 810, 10.1016/j.matdes.2018.10.014 Smith, 2018, Less is more: sampling chemical space with active learning, J. Chem. Phys., 148 Durand, 2018, A machine learning approach for online automated optimization of super-resolution optical microscopy, Nat. Commun., 9, 5247, 10.1038/s41467-018-07668-y Borodinov, 2019, Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy, NPJ Comput. Mater., 5, 10.1038/s41524-019-0148-5 Liotti, 2018, Crystal nucleation in metallic alloys using X-ray radiography and machine learning, Sci. Adv., 4, 10.1126/sciadv.aar4004 Li, 2018, Machine learning-enabled identification of material phase transitions based on experimental data: exploring collective dynamics in ferroelectric relaxors, Sci. Adv., 4, eaap8672, 10.1126/sciadv.aap8672 Walker, 2018, Determining molecular properties with differential mobility spectrometry and machine learning, Nat. Commun., 9, 5096, 10.1038/s41467-018-07616-w Rashidi, 2018, Autonomous scanning probe microscopy in situ tip conditioning through machine learning, ACS Nano, 12, 5185, 10.1021/acsnano.8b02208 Ziatdinov, 2017, Learning surface molecular structures via machine vision, NPJ Comput. Mater., 3, 10.1038/s41524-017-0038-7 Paruzzo, 2018, Chemical shifts in molecular solids by machine learning, Nat. Commun., 9, 4501, 10.1038/s41467-018-06972-x Park, 2017, Classification of crystal structure using a convolutional neural network, IUCrJ, 4, 486, 10.1107/S205225251700714X Masubuchi, 2019, Classifying optical microscope images of exfoliated graphene flakes by data-driven machine learning, NPJ 2d Mater. Appl., 3, 4, 10.1038/s41699-018-0084-0 Feng, 2018, Accelerating multi-point statistics reconstruction method for porous media via deep learning, Acta Mater., 159, 296, 10.1016/j.actamat.2018.08.026 Oxley, 2020, Deep learning of interface structures from the 4D STEM data: cation intermixing vs. Roughening, arXiv Jha, 2018, Extracting grain orientations from EBSD patterns of polycrystalline materials using convolutional neural networks, Microsc. Microanal., 24, 497, 10.1017/S1431927618015131 Himanen, 2019, Data-driven materials science: status, challenges, and perspectives, Adv. Sci., 6, 1900808, 10.1002/advs.201900808 Kim, 2016, Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites, J. Phys. Chem. C, 120, 14575, 10.1021/acs.jpcc.6b05068 Panapitiya, 2018, Machine-learning prediction of CO adsorption in thiolated, Ag-alloyed Au nanoclusters, J. Am. Chem. Soc., 140, 17508, 10.1021/jacs.8b08800 Hansen, 2015, Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space, J. Phys. Chem. Lett., 6, 2326, 10.1021/acs.jpclett.5b00831 Ramprasad, 2017, Machine learning in materials informatics: recent applications and prospects, NPJ Comput. Mater., 3, 10.1038/s41524-017-0056-5 Takahashi, 2016, Material synthesis and design from first principle calculations and machine learning, Comput. Mater. Sci., 112, 364, 10.1016/j.commatsci.2015.11.013 Jackson, 2019, Electronic structure at coarse-grained resolutions from supervised machine learning, Sci. Adv., 5, eaav1190, 10.1126/sciadv.aav1190 Schmidt, 2018, Predicting the stability of ternary intermetallics with density functional theory and machine learning, J. Chem. Phys., 148, 241728, 10.1063/1.5020223 Ma, 2018, Deep-learning-enabled on-demand design of chiral metamaterials, ACS Nano, 12, 6326, 10.1021/acsnano.8b03569 Oliynyk, 2017, Disentangling structural confusion through machine learning: structure prediction and polymorphism of equiatomic ternary phases ABC, J. Am. Chem. Soc., 139, 17870, 10.1021/jacs.7b08460 Lu, 2018, Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning, Nat. Commun., 9, 3405, 10.1038/s41467-018-05761-w Chmiela, 2018, Towards exact molecular dynamics simulations with machine-learned force fields, Nat. Commun., 9, 10.1038/s41467-018-06169-2 Rouet-Leduc, 2016, Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning, Sci. Rep., 6, 10.1038/srep24862 Jennings, 2019, Genetic algorithms for computational materials discovery accelerated by machine learning, NPJ Comput. Mater., 5, 10.1038/s41524-019-0181-4 Yamashita, 2018, Crystal structure prediction accelerated by Bayesian optimization, Phys. Rev. Mater., 2, 13803, 10.1103/PhysRevMaterials.2.013803 Gopakumar, 2018, Multi-objective optimization for materials discovery via adaptive design, Sci. Rep., 8, 10.1038/s41598-018-21936-3 Hu, 2003, Combined first-principles calculation and neural-network correction approach for heat of formation, J. Chem. Phys., 119, 11501, 10.1063/1.1630951 Ramakrishnan, 2015, Big data meets quantum chemistry approximations: the Δ-machine learning approach, J. Chem. Theor. Comput., 11, 2087, 10.1021/acs.jctc.5b00099 Smith, 2019, Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning, Nat. Commun., 10, 10.1038/s41467-019-10827-4 Yamada, 2019, Predicting materials properties with little data using shotgun transfer learning, ACS Cent. Sci., 5, 1717, 10.1021/acscentsci.9b00804 Jain, 2016, Computational predictions of energy materials using density functional theory, Nat. Rev. Mater., 1, 15004, 10.1038/natrevmats.2015.4 Gao, 2017, Designing high dielectric permittivity material in barium titanate, J. Phys. Chem. C, 121, 13106, 10.1021/acs.jpcc.7b04636 Iwasaki, 2019, Machine-learning guided discovery of a new thermoelectric material, Sci. Rep., 9, 10.1038/s41598-019-39278-z Ren, 2018, Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments, Sci. Adv., 4, eaaq1566, 10.1126/sciadv.aaq1566 Cao, 2018, How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics, ACS Nano, 12, 7434, 10.1021/acsnano.8b04726 Anoop Krishnan, 2018, Predicting the dissolution kinetics of silicate glasses using machine learning, J. Non. Cryst. Sol., 487, 37, 10.1016/j.jnoncrysol.2018.02.023 Umehara, 2019, Analyzing machine learning models to accelerate generation of fundamental materials insights, NPJ Comput. Mater., 5, 10.1038/s41524-019-0172-5 Rosenbrock, 2017, Discovering the building blocks of atomic systems using machine learning: application to grain boundaries, NPJ Comput. Mater., 3, 10.1038/s41524-017-0027-x Orme, 2016, Insights into twinning in Mg AZ31: a combined EBSD and machine learning study, Comput. Mater. Sci., 124, 353, 10.1016/j.commatsci.2016.08.011 Moosavi, 2019, Capturing chemical intuition in synthesis of metal-organic frameworks, Nat. Commun., 10, 10.1038/s41467-019-08483-9 Molnar, 2019 Chen, 2018, Synthesis of water-soluble [Au25(SR)18]- using a stoichiometric amount of NaBH4, J. Am. Chem. Soc., 140, 11370, 10.1021/jacs.8b05689 Bartók, 2013, On representing chemical environments, Phys. Rev. B, 87, 184115, 10.1103/PhysRevB.87.184115 Goodall, 2019, Predicting materials properties without crystal structure: deep representation learning from stoichiometry, arXiv Wang, 2020, Compositionally-restricted attention-based network for materials property prediction, ChemRxiv Jinich, 2018, A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions, ACS Cent. Sci., 5, 1199, 10.1021/acscentsci.9b00297 Ouyang, 2018, SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates, Phys. Rev. Mater., 2, 83802, 10.1103/PhysRevMaterials.2.083802 Kim, 2020, Inverse design of porous materials using artificial neural networks, Sci. Adv., 6, eaax9324, 10.1126/sciadv.aax9324 Ren, Z.; Oviedo, F.; Xue, H.; Thway, M.; Zhang, K.; Li, N.; Perea, J.D.; Layurova, M.; Wang, Y.; Tian, S. Physics-guided characterization and optimization of solar cells using surrogate machine learning model. In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC); IEEE, 2019; pp 3054–3058. Kazarian, 2006, Applications of ATR-FTIR spectroscopic imaging to biomedical samples, Biochim. Biophys. Acta, 1758, 858, 10.1016/j.bbamem.2006.02.011 Xie, 2018, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Phys. Rev. Lett., 120, 145301, 10.1103/PhysRevLett.120.145301 Wu, 2019, A comprehensive survey on graph neural networks, arXiv Beluch, W.H.; Genewein, T.; Nürnberger, A.; Köhler, J.M. The power of ensembles for active learning in image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018; pp 9368–9377. Settles, 2012 del Rosario, 2019, Assessing the frontier: active learning, model accuracy, and multi-objective materials discovery and optimization, arXiv Copp, 2014, Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning, Adv. Mater., 26, 5839, 10.1002/adma.201401402 Correa-Baena, 2018, Accelerating materials development via automation, machine learning, and high-performance computing, Joule, 2, 1410, 10.1016/j.joule.2018.05.009