AEROTHERMODYNAMIC ANALYSIS FOR AXISYMMETRIC PROJECTILES AT SUPERSONIC/HYPERSONIC SPEEDS

Engineering Computations - Tập 10 Số 5 - Trang 423-445 - 1993
MICHAEL J.NUSCA1
1Propulsion and Flight Division, Weapons Technology Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

Tóm tắt

An aerothermodynamic design code for axisymmetric projectiles has been developed using a viscous‐inviscid interaction scheme. Separate solution procedures for the inviscid and the viscous (boundary layer) fluid dynamic equations are coupled by an iterative solution procedure. Non‐equilibrium, equilibrium and perfect gas boundary layer equations are included. The non‐equilibrium gas boundary layer equations assume a binary mixture (two species; atoms and molecules) of chemically reacting perfect gases. Conservation equations for each species include finite reaction rates applicable to high temperature air. The equilibrium gas boundary layer equations assume infinite rate reactions, while the perfect gas equations assume no chemical reactions. Projectile near‐wall and surface flow profiles (velocity, pressure, density, temperature and heat transfer) representing converged solutions to both the inviscid and viscous equations can be obtained in less than two minutes on minicomputers. A technique for computing local reverse flow regions is included. Computations for yawed projectiles are accomplished using a coordinate system transformation technique that is valid for small angle‐of‐attack. Computed surface pressure, heat transfer rates and aerodynamic forces and moments for 1.25 &le Mach No. &le 10.5 are compared to wind tunnel and free flight measurements on flat plate, blunt‐cone, and projectile geometries such as a cone‐cylinder‐flare.

Từ khóa


Tài liệu tham khảo

Murphy C. H., US Army Ball. Res. Lab., Aberdeen Proving Ground, Rep. No. 1216 (AD A442757)

Celmins I., US Army Ball. Res. Lab., Aberdeen Proving Ground, BRL-TR-2882

Jones G. R., AIAA Paper 90-1720

Contractor, BRL-CR-646, US Army Ball. Res. Lab., Aberdeen Proving Ground

10.2514/3.9872

Park C., S. Calculation of real-gas effects on airfoil aerodynamic characteristics, AIAA Paper 90-1712

Palaniswamy S., AIAA Paper 89-0200

Liepmann H. W., 1957, Elements of Gasdynamics, 10.1063/1.3060140

10.2514/8.3316

Anderson J. D., 1989, Hypersonic and High Temperature Gas Dynamics

McCoy R. L., BRL Report No. 1682, US Army Ball. Res. Lab., Aberdeen Proving Ground (AD771148)

10.2514/3.28772

Cebeci T., 1974, Analysis of Turbulent Boundary Layers

Bradshaw P., 1981, Engineering Calculation Methodsfor Turbulent Flow

10.1146/annurev.fl.01.010169.000401

Reyhner T. A., 1968, Mech., 3, 173

10.2514/3.44552

Keller H. B., 1970, Numerical Solutions of Partial Differential Equations II

10.2514/3.2299

Chung P. M., NASA TN D-140

Kwon O., 1979, Trans. ASME, 101, 466

Williams B. R., 1985, Aeronaut. J., 20, 185, 10.1017/S0001924000014779

Im B. J., AIAA Paper 88-0566

Hemsch M. J., 1986, Tactical Missile Aerodynamics

Charters A. C., US Army Ball. Res. Lab., Aberdeen Proving Ground, Report No. 287

McCoy R. L., US Army Ball. Res. Lab., Aberdeen Proving Ground, BRL-TR-2293

Donovan W. F., US Army Ball. Res. Lab., Aberdeen Proving Ground, BRL-MR-3573

Sedney R., US Army Ball. Res. Lab., Aberdeen Proving Ground, BRL Report No. 1043

Buelow P., AIAA Paper 89-0847

Rubesin M. W., 1949, Trans. ASME, 71, 358

10.2514/8.2236

Eckert E. R., 1955, J. Aeronaut. Sci., 22, 585

10.2514/3.2168

Van Driest E. R., 1956, Aeronaut. Eng. Rev., 15, 26

Hughson M. C., 1989, AIAA Paper, 8, 0524

Lockman W. K., Proc. 2ndNASA CFD Validation Workshop, NASA Lewis Research Center (1990)

Whyte R. H., US Army Ball. Res. Lab., Aberdeen Proving Ground, BRL-CR-659

Milton J. E., 1982, AIAA Paper, 8, 0052

Holden M. S., 1972, Report No. AB-5072-A, Cornell Aeronautical Laboratory (Calspan)

10.2514/3.26203

Thompson R., 1990, AIAA Paper, 9, 1714