ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes
Tài liệu tham khảo
Aquino, 2007, Bioavailability and toxicity of metal nutrients during anaerobic digestion, J. Environ. Eng., 133, 28, 10.1061/(ASCE)0733-9372(2007)133:1(28)
Barrera, 2015, Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater, Water Res., 71, 42, 10.1016/j.watres.2014.12.026
Bartacek, 2008, Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation, J. Ind. Microbiol. Biotechnol., 35, 1465, 10.1007/s10295-008-0448-0
Batstone, 2002, The IWA Anaerobic Digestion Model No 1 (ADM1), Water Sci. Technol., 45, 65, 10.2166/wst.2002.0292
Batstone, 2012, Towards a generalized physicochemical framework, Water Sci. Technol., 66, 1147, 10.2166/wst.2012.300
Cai, 2018, Bioresource Technology Optimization of Fe 2 + supplement in anaerobic digestion accounting for the, Bioresour. Technol., 250, 163, 10.1016/j.biortech.2017.07.151
Callander, 1983, Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. II. Applications, Biotechnol. Bioeng., 25, 1959, 10.1002/bit.260250806
Dai, 2017, Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion, Bioresour. Technol., 245, 598, 10.1016/j.biortech.2017.08.208
Ekama, 2006, Integrated chemical-physical processes kinetic modelling of multiple mineral precipitation problems, Water Sci. Technol., 53, 65, 10.2166/wst.2006.407
Esposito, 2011, Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor, Process Biochem., 46, 557, 10.1016/j.procbio.2010.10.010
Federovich, 2003, Extension of Anaerobic Digestion Model No. 1, Appl. Biochem. Biotechnol., 109, 33, 10.1385/ABAB:109:1-3:33
Fermoso, 2008, Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application, Sci. Total Environ., 407, 3652, 10.1016/j.scitotenv.2008.10.043
Fermoso, 2009, Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application, Sci. Total Environ., 407, 3652, 10.1016/j.scitotenv.2008.10.043
Flores-Alsina, 2016, Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes, Water Res., 95, 370, 10.1016/j.watres.2016.03.012
Glass, 2012, Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide, Front. Microbiol., 3, 1, 10.3389/fmicb.2012.00061
Gustafsson, J.P., (https://vminteq.lwr.kth.se/download/), 2018. Visual Minteq 3.1.
Gustavsson, 2012
Jimenez, 2015, Instrumentation and control of anaerobic digestion processes: a review and some research challenges, Rev. Environ. Sci. Biotechnol., 14, 615, 10.1007/s11157-015-9382-6
Kaksonen, 2003, Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater, Water Res., 37, 255, 10.1016/S0043-1354(02)00267-1
Ketheesan, 2016, Bioresource Technology Iron deficiency and bioavailability in anaerobic batch and submerged membrane bioreactors (SAMBR) during organic shock loads, Bioresour. Technol., 211, 136, 10.1016/j.biortech.2016.03.082
Koutsoukos, 1980, Calcium phosphates. A constant composition study, J. Am. Chem. Soc., 102, 1553, 10.1021/ja00525a015
Liu, 2015, Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate, Sci. Rep., 5, 1
Lizarralde, 2015, A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models, Water Res., 74, 239, 10.1016/j.watres.2015.01.031
Mattei, 2015, Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria, Ecol. Modell., 304, 44, 10.1016/j.ecolmodel.2015.02.007
Mbamba, 2015, A systematic study of multiple minerals precipitation modelling in wastewater treatment, Water Res., 85, 359, 10.1016/j.watres.2015.08.041
Morse, 1999, Chemical influence on trace metalsulphide interactions in anoxic sediments, Geochim. Cosmochim. Acta, 63, 10.1016/S0016-7037(99)00258-6
Musvoto, 2000, Extension and application of the three-phase weak acid/base kinetic model to the aeration treatment of anaerobic digester liquors, Water SA, 26, 417
Musvoto, 2000, Integrated chemical-physical processes modelling – I. Development of a kinetic-based model for mixed weak acid/base systems, Water Res., 34, 1857, 10.1016/S0043-1354(99)00334-6
Nielsen, 2005, Sulfide-iron interactions in domestic wastewater from a gravity sewer, Water Res., 39, 2747, 10.1016/j.watres.2005.04.048
Ohlinger, 1998, Predicting struvite formation in digestion, Water Res., 32, 3607, 10.1016/S0043-1354(98)00123-7
Plummer, 1982, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta, 46, 1011, 10.1016/0016-7037(82)90056-4
Preis, 2001, Thermodynamic investigation of phase equilibria in metal carbonate-water-carbon dioxide systems, Monatsh. Chem., 132, 1327, 10.1007/s007060170020
Roussel, 2016, Significance of vivianite precipitation on the mobility of iron in anaerobically digested sludge, Front. Environ. Sci., 4, 1, 10.3389/fenvs.2016.00060
Roussel, J., 2012. Metal behaviour in anaerobic sludge digesters supplemented with trace nutrients. PhD Thesis, Univ. Birmingham, United Kingdom.
Shakeri, 2012, Talanta Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors, Talanta, 89, 470, 10.1016/j.talanta.2011.12.065
Sharma, 2014, Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm, Water Res., 49, 175, 10.1016/j.watres.2013.11.019
Smith, R.M., Martell, A.E., Motekaitis, R.J., 2004. NIST critically selected stability constants of metal complexes database. NIST Standard Reference Database 46, Version 8.0. National Institute of Standard and Technology, Gaithersburg, MD, USA.
Solon, 2015, Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion, Water Res., 70, 235, 10.1016/j.watres.2014.11.035
Thanh, 2015, Trace metal speciation and bioavailability in anaerobic digestion: a review, Biotechnol. Adv., 34, 122, 10.1016/j.biotechadv.2015.12.006
Thanh, 2017, Effect of operating conditions on speciation and bioavailability of trace metals in submerged anaerobic membrane bioreactors, Bioresour. Technol., 243, 810, 10.1016/j.biortech.2017.07.040
Thanh, 2017, Effect of Ethylenediamine-N, N’-disuccinic acid (EDDS) on the speciation and bioavailability of Fe 2 + in the presence of sulfide in anaerobic digestion, Bioresour. Technol., 229, 169, 10.1016/j.biortech.2016.12.113
van der Veen, 2007, Bonding from analysis of metals and sulfur fractionation in methanol-grown anaerobic granular sludge, Eng. Life Sci., 7, 480, 10.1002/elsc.200720208
van Hullebusch, 2016, Methodological approaches for fractionation and speciation to estimate trace element bioavailability in engineered anaerobic digestion ecosystems: an overview, Crit. Rev. Environ. Sci. Technol., 46, 1324, 10.1080/10643389.2016.1235943
Xu, 2015, Mathematical modeling of solid-state anaerobic digestion, Prog. Energy Combust. Sci., 51, 49, 10.1016/j.pecs.2015.09.001
Yekta, 2014, Thermodynamic modeling of iron and trace metal solubility and speciation under sulfidic and ferruginous conditions in full scale continuous stirred tank biogas reactors, Appl. Geochem., 47, 61, 10.1016/j.apgeochem.2014.05.001
Yekta, 2016, Chemical speciation of sulfur and metals in biogas reactors—implications for cobalt and nickel bio-uptake processes, J. Hazard. Mater., 324, 110, 10.1016/j.jhazmat.2015.12.058
Yekta, 2017, Importance of sulfide interaction with iron as regulator of the microbial community in biogas reactors and its effect on methanogenesis, volatile fatty acids turnover, and syntrophic long-chain fatty acids degradation, J. Biosci. Bioeng., 123, 597, 10.1016/j.jbiosc.2016.12.003
Zhang, 2015, Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions, Bioresour. Technol., 196, 279, 10.1016/j.biortech.2015.07.065
Zhang, 2015, Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability, Water Res., 84, 266, 10.1016/j.watres.2015.07.010