AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models

Optimization Methods and Software - Tập 27 Số 2 - Trang 233-249 - 2012
David Fournier1, Hans J. Skaug2, Johnoel Ancheta3, James N. Ianelli4, Árni Magnússon5, Mark N. Maunder6, Anders Nielsen7, John Sibert3
1Otter Research Ltd. , Sidney , Canada
2Department of Mathematics, University of Bergen, Norway
3Joint Institute for Marine and Atmospheric Research , University of Hawaii at Mānoa , USA
4REFM Division , Alaska Fisheries Science Center , NOAA, Seattle , WA , USA
5Marine Research Institute, Reykjavik, Iceland
6Inter-American Tropical Tuna Commission; La Jolla CA USA
7Tech. Univ. Denmark, Natl. Inst. Aquat. Resources , Charlottenlund , Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

ADMB Project. 2008. “An introduction to AD Model Builder for use in nonlinear modeling and statistics”. Honolulu, HI Version 9.0.0, ADMB Foundation

ADMB Project. 2008. “AUTODIF: A C++array language extension with automatic differentiation for use in nonlinear modeling and statistics”. Honolulu, HI ADMB Foundation

2009, Random effects in AD Model Builder: ADMB-RE user guide

10.1139/F09-142

10.1016/S0096-3003(99)00230-1

Bischof C., 1992, Sci. Program., 1, 1

10.1111/j.1748-7692.2004.tb01190.x

10.1139/f03-046

10.2193/2008-469

Carlin B. P., 1996, Bayes and Empirical Bayes Methods for Data Analysis

Cui G., 2002, J. Cetacean Res. Manage., 4, 123, 10.47536/jcrm.v4i2.848

10.1098/rspb.2009.1106

10.1111/j.1467-8276.2007.01025.x

10.1371/journal.pone.0012114

10.1139/f87-051

10.1139/f89-130

10.1139/f98-100

10.1139/f90-032

Gay, D. M. 1996.More AD of nonlinear AMPL models: Computing Hessian information and exploiting partial separability, in Computational Differentiation: Techniques, Applications, and Tools, Edited by: Berz, M., Bischof, C., Corliss, G. and Griewank, A. 173–184. Philadelphia, PA: SIAM.

Gelman A., 1995, Bayesian Data Analysis, 10.1201/9780429258411

Griewank A., 2000, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation

Griewank A., 1992, Automatic Differentiation of Algorithms: Theory, Implementation, and Application

10.1145/229473.229474

10.1071/MF01049

Hascoët L., 2004, TAPENADE 2.1 user's guide

Hilborn, R., Maunder, M., Parma, A., Ernst, B., Payne, J. and Starr, P. 2003. “Coleraine: A generalized age-structured stock assessment model”. Seattle: University of Washington. Version 2.0, Rep. SAFS-UW-0116

10.1038/358410a0

10.4319/lo.2010.55.3.1047

Hoyle S. D., 2004, Anim. Biodiv. Cons., 27, 247

Kim S. W., 2009, Modelling the flowering of four eucalypts species via MTDg with interactions, 2625

10.1534/genetics.106.055350

10.1016/j.tpb.2009.12.003

10.1666/08080.1

10.1093/aje/kwk107

Magnusson A., 2009, ADMB Foundation Newsl., 1, 1

10.1111/j.1467-2979.2007.00258.x

Martin, J. L., Prager, M. H. and Stephens, A. 2006. “User's guide to ADMB2R: A set of AD Model Builder output routines compatible with the R statistics language”. Miami, FL: NOAA. Tech. Memo. NMFS-SEFSC-546

10.1139/f01-029

Maunder M. N., 2010, ADMB Foundation Newsl., 2, 3

Maunder M. N., 2003, Inter-Am. Trop. Tuna Comm. Bull., 22, 433

Maunder M. N., 2006, Bull. Mar. Sci., 79, 545

Maunder M. N., 2009, Computers in fisheries population dynamics, in Computers in Fisheries Research, 337, 10.1007/978-1-4020-8636-6_11

Maunder, M. N., Skaug, H. J., Fournier, D. A. and Hoyle, S. D. 2009.Comparison of estimators for mark-recapture models: Random effects, hierarchical Bayes, and AD Model Builder, in Modeling Demographic Processes in Marked Populations, Edited by: Thomson, D. L., Cooch, E. G. and Conroy, M. J. 917–948. New York: Springer.

Methot, R. D. Jr. 2009.Stock assessment: Operational models in support of fisheries management, in The Future of Fisheries Science in North America, Edited by: Beamish, R. J. and Rothschild, B. J. 137–165. New York: Springer.

10.1111/1368-423X.t01-1-00116

10.1006/jcph.1994.1054

10.1139/f07-064

10.1016/j.biocon.2009.03.024

Parma, A. M. 2002.Bayesian approaches to the analysis of uncertainty in the stock assessment of Pacific halibut, in Incorporating Uncertainty into Fishery Models, Edited by: Berkson, J. M., Kline, L. L. and Orth, D. J. 113–136. Bethesda, MD: American Fisheries Society.

10.1016/j.insmatheco.2008.03.010

Punt A. E., 2001, Bayesian Stock Assessment Methods in Fisheries: User's Manual, 12

10.1006/jmsc.1999.0538

10.1071/MF01008

Schnute J., 2007, ICES J. Mar. Sci., 64, 1077, 10.1093/icesjms/fsl024

Schnute, J. T., Richards, L. J. and Olsen, N. 1998.Statistics, software, and fish stock assessment, in Fishery Stock Assessment ModelsEdited by: Funk, F., Quinn Ii, T. J., Heifetz, J., Ianelli, J. N., Powers, J. E., Schweigert, J. F., Sullivan, P. J. and Zhang, C. I. 171–184. Sea Grant Program, Fairbanks

10.1016/j.pocean.2008.06.003

10.1139/f99-017

10.1080/10618600.1995.10474671

10.1016/j.csda.2006.03.005

10.1093/icesjms/fsm118

10.1139/f04-020

10.1016/j.icesjms.2005.05.010