AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models
Tóm tắt
Từ khóa
Tài liệu tham khảo
ADMB Project. 2008. “An introduction to AD Model Builder for use in nonlinear modeling and statistics”. Honolulu, HI Version 9.0.0, ADMB Foundation
ADMB Project. 2008. “AUTODIF: A C++array language extension with automatic differentiation for use in nonlinear modeling and statistics”. Honolulu, HI ADMB Foundation
2009, Random effects in AD Model Builder: ADMB-RE user guide
Bischof C., 1992, Sci. Program., 1, 1
Carlin B. P., 1996, Bayes and Empirical Bayes Methods for Data Analysis
Gay, D. M. 1996.More AD of nonlinear AMPL models: Computing Hessian information and exploiting partial separability, in Computational Differentiation: Techniques, Applications, and Tools, Edited by: Berz, M., Bischof, C., Corliss, G. and Griewank, A. 173–184. Philadelphia, PA: SIAM.
Griewank A., 2000, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
Griewank A., 1992, Automatic Differentiation of Algorithms: Theory, Implementation, and Application
Hascoët L., 2004, TAPENADE 2.1 user's guide
Hilborn, R., Maunder, M., Parma, A., Ernst, B., Payne, J. and Starr, P. 2003. “Coleraine: A generalized age-structured stock assessment model”. Seattle: University of Washington. Version 2.0, Rep. SAFS-UW-0116
Hoyle S. D., 2004, Anim. Biodiv. Cons., 27, 247
Kim S. W., 2009, Modelling the flowering of four eucalypts species via MTDg with interactions, 2625
Magnusson A., 2009, ADMB Foundation Newsl., 1, 1
Martin, J. L., Prager, M. H. and Stephens, A. 2006. “User's guide to ADMB2R: A set of AD Model Builder output routines compatible with the R statistics language”. Miami, FL: NOAA. Tech. Memo. NMFS-SEFSC-546
Maunder M. N., 2010, ADMB Foundation Newsl., 2, 3
Maunder M. N., 2003, Inter-Am. Trop. Tuna Comm. Bull., 22, 433
Maunder M. N., 2006, Bull. Mar. Sci., 79, 545
Maunder M. N., 2009, Computers in fisheries population dynamics, in Computers in Fisheries Research, 337, 10.1007/978-1-4020-8636-6_11
Maunder, M. N., Skaug, H. J., Fournier, D. A. and Hoyle, S. D. 2009.Comparison of estimators for mark-recapture models: Random effects, hierarchical Bayes, and AD Model Builder, in Modeling Demographic Processes in Marked Populations, Edited by: Thomson, D. L., Cooch, E. G. and Conroy, M. J. 917–948. New York: Springer.
Methot, R. D. Jr. 2009.Stock assessment: Operational models in support of fisheries management, in The Future of Fisheries Science in North America, Edited by: Beamish, R. J. and Rothschild, B. J. 137–165. New York: Springer.
Parma, A. M. 2002.Bayesian approaches to the analysis of uncertainty in the stock assessment of Pacific halibut, in Incorporating Uncertainty into Fishery Models, Edited by: Berkson, J. M., Kline, L. L. and Orth, D. J. 113–136. Bethesda, MD: American Fisheries Society.
Punt A. E., 2001, Bayesian Stock Assessment Methods in Fisheries: User's Manual, 12
Schnute, J. T., Richards, L. J. and Olsen, N. 1998.Statistics, software, and fish stock assessment, in Fishery Stock Assessment ModelsEdited by: Funk, F., Quinn Ii, T. J., Heifetz, J., Ianelli, J. N., Powers, J. E., Schweigert, J. F., Sullivan, P. J. and Zhang, C. I. 171–184. Sea Grant Program, Fairbanks