A zone settling velocity function to characterize settling properties of suspensions in thickening applications

Minerals Engineering - Tập 177 - Trang 107386 - 2022
Lianfu Zhang1,2, Hongjiang Wang1,2, Aixiang Wu1,2, Bern Klein3, Jiabin Guo1,2, Xi Zhang1,2
1Key Laboratory of High-Efficient Mining and Safety of Metal Mines of the Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
2School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdullah, 1999, The use of bulk density measurements as flowability indicators, Powder Technol., 102, 151, 10.1016/S0032-5910(98)00208-3

Been, 1981, Self-weight consolidation of soft soils: an experimental and theoretical study, Geotechnique, 31, 519, 10.1680/geot.1981.31.4.519

Bürger, 2017, A simulation model for settling tanks with varying cross-sectional area, Chem. Eng. Commun., 204, 1270, 10.1080/00986445.2017.1360871

Bürger, 2018, Flux identification of scalar conservation laws from sedimentation in a cone, IMA Journal of Applied Mathematics, 83, 526, 10.1093/imamat/hxy018

Bürger, 2018, Estimating the hindered-settling flux function from a batch test in a cone, Chem. Eng. Sci., 192, 244, 10.1016/j.ces.2018.07.029

Bürger, 1998, Mathematical model and numerical simulation of the settling of flocculated suspensions, Int. J. Multiph. Flow, 24, 1005, 10.1016/S0301-9322(98)00026-3

Bürger, 2013, Convexity-preserving flux identification for scalar conservation laws modelling sedimentation, Inverse Probl., 29, 045008, 10.1088/0266-5611/29/4/045008

Bürger, 2000, Numerical methods for the simulation of the settling of flocculated suspensions, Chem. Eng. J., 80, 91, 10.1016/S1383-5866(00)00080-0

Bürger, 2001, On some upwind difference schemes for the phenomenological sedimentation-consolidation model, J. Eng. Math., 41, 145, 10.1023/A:1011935232049

Bürger, 2000, On upper rarefaction waves in batch settling, Powder Technol., 108, 74, 10.1016/S0032-5910(99)00257-0

Bürger, 1998, Existence, uniqueness, and stability of generalized solutions of an initial-boundary value problem for a degenerating quasilinear parabolic equation, J. Math. Anal. Appl., 218, 207, 10.1006/jmaa.1997.5763

Bürger, 2000, Model equations for gravitational sedimentation-consolidation processes, ZAMM-J. Appl. Math. Mech., 80, 79, 10.1002/(SICI)1521-4001(200002)80:2<79::AID-ZAMM79>3.0.CO;2-Y

Buscall, 1988, Scaling behaviour of the rheology of aggregate networks formed from colloidal particles, J. Chem. Soc., Faraday Trans. 1, 84, 4249, 10.1039/f19888404249

Buscall, 1987, The rheology of strongly-flocculated suspensions, J. Non-Newtonian Fluid. Mech., 24, 183, 10.1016/0377-0257(87)85009-7

Cacossa, K.F., Vaccari, D.A., 1994. Calibration of a compressive gravity thickening model from a single batch settling curve. Water Sci. Technol., 30, 8, 107.

Cameron, M., 2011. Notes on the Burgers Equation. University of Maryland.

Cho, 1993, Settling velocity model of activated sludge, Water Res., 27, 1237, 10.1016/0043-1354(93)90016-B

Chryss, 1999, Maximum packing concentration of coal water mixtures, Coal Perparation, 21, 83, 10.1080/07349349908945610

Concha, A.F., 2014. Kynch theory of sedimentation. Solid-Liquid Separation in the Mining Industry.

Concha, 1991, Settling velocities of particulate systems, 6. Kynch sedimentation processes: batch settling, Int. J. Miner. Process., 32, 193, 10.1016/0301-7516(91)90068-T

Derlon, 2017, Batch settling curve registration via image data modeling, Water Res., 114, 327, 10.1016/j.watres.2017.01.049

Dick, 1967, Evaluation of activated sludge thickening theories, J. Sanit. Eng. Div., 93, 9, 10.1061/JSEDAI.0000737

Diehl, 1995, On scalar conservation laws with point source and discontinuous flux function, SIAM J. Math. Anal., 26, 1425, 10.1137/S0036141093242533

Diehl, 2007, Estimation of the batch-settling flux function for an ideal suspension from only two experiments, Chem. Eng. Sci., 62, 4589, 10.1016/j.ces.2007.05.025

Diehl, 2015, Numerical identification of constitutive functions in scalar nonlinear convection–diffusion equations with application to batch sedimentation, Appl. Numer. Math., 95, 154, 10.1016/j.apnum.2014.04.002

Eswaraiah, 2012, Settling characteristics of ultrafine iron ore slimes, Int. J. Min. Met. Mater., 19, 95, 10.1007/s12613-012-0521-6

Garrido, 2003, Software for the design and simulation of gravity thickeners, Miner. Eng., 16, 85, 10.1016/S0892-6875(02)00168-1

Grassia, 2008, A simplified parameter extraction technique using batch settling data to estimate suspension material properties in dewatering applications, Chem. Eng. Sci., 63, 1971, 10.1016/j.ces.2007.12.025

Grassia, 2011, Closed-form solutions for batch settling height from model settling flux functions, Chem. Eng. Sci., 66, 964, 10.1016/j.ces.2010.12.002

Kang, 2019, A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solutions, Colloids Surfaces A Physicochem. Eng. Asp., 579, 123647, 10.1016/j.colsurfa.2019.123647

Kynch, 1952, A theory of sedimentation, Trans. Faraday Soc., 48, 166, 10.1039/tf9524800166

Landajuela, M., 2011. Burgers equation. BCAM Internship report: Basque Center for Applied Mathematics.

Landman, 1994, Solid/liquid separation of flocculated suspensions, Adv. Colloid Interface Sci., 51, 175, 10.1016/0001-8686(94)80036-7

LeVeque, R.J., 2002. Finite volume methods for hyperbolic problems. Cambridge university press.

Martin, 1995, Accurate determination of the sedimentation flux of concentrated suspensions, Phys. Fluids, 7, 2510, 10.1063/1.868696

Meeten, 1994, Shear and compressive yield in the filtration of a bentonite suspension, Colloids Surfaces A Physicochem. Eng. Asp., 82, 77, 10.1016/0927-7757(93)02613-J

Oleinik, O.A.e., 1959. Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Matematicheskikh Nauk, 14, 2, 165–170.

Plósz, 2020, Hindered and compression solid settling functions – Sensor data collection, practical model identification and validation, Water Res., 184, 116129, 10.1016/j.watres.2020.116129

Ramin, 2014, A new settling velocity model to describe secondary sedimentation, Water Res., 66, 447, 10.1016/j.watres.2014.08.034

Roberts, 1949, Thickening-Art of Science. Mining Eng., 84, 61

Schuler, 2007, Density effects on activated sludge zone settling velocities, Water Res., 41, 1814, 10.1016/j.watres.2007.01.011

Takács, 1991, A dynamic model of the clarification-thickening process, Water Res., 25, 1263, 10.1016/0043-1354(91)90066-Y

Torfs, E., Nopens, I., Winkler, M., Vanrolleghem, P.A., Balemans, S., Smets, I.Y., van Loosdrecht, M., Nielsen, P., Lopez-Vazquez, C., Brdjanovic, D., 2016. Settling tests. Experimental Methods in Wastewater Treatment; van Loosdrecht, M., Nielsen, P., Lopez-Vazquez, CM, Brdjanovic, D., Eds, 235–262.

Usher, 2005, Steady state thickener modelling from the compressive yield stress and hindered settling function, Chem. Eng. J., 111, 253, 10.1016/j.cej.2005.02.015

Vanderhasselt, 2000, Estimation of sludge sedimentation parameters from single batch settling curves, Water Res., 34, 395, 10.1016/S0043-1354(99)00158-X

Vanrolleghem, 1996, On-line quantification of settling properties with In-Sensor-Experiments in an automated settlometer, Water Sci. Technol., 33, 37, 10.2166/wst.1996.0004

Vesilind, 1968, Design of prototype thickeners from batch settling tests, Water Sewage Works, 115, 302

Yang, 2019, Effect of primary flocculant type on a two-step flocculation process on iron ore fine tailings under alkaline environment, Miner. Eng., 132, 14, 10.1016/j.mineng.2018.11.053

Zhang, 2018, Representation of batch settling via fitting a logistic function, Miner. Eng., 128, 160, 10.1016/j.mineng.2018.08.039

Zhou, 1995, Yield stress and maximum packing fraction of concentrated suspensions, Rheol. Acta, 34, 544, 10.1007/BF00712315

Zhou, 2001, Chemical and physical control of the rheology of concentrated metal oxide suspensions, Chem. Eng. Sci., 56, 2901, 10.1016/S0009-2509(00)00473-5