A yeast genetic assay for caspase cleavage of the amyloid-β precursor protein
Tóm tắt
A functional assay for proteolytic processing of the amyloid precursor protein (APP) was set up in yeast. This consisted of a membrane-bound chimeric protein containing the β-secretase cleaved C-terminal fragment of APP fused to the Gal4 transcription factor. Using this chimera in a GAL-reporter yeast strain, an expression library of human cDNAs was screened for clones that could activate the GAL-reporter genes by proteolytic processing of the membrane-bound APP-Gal4. Two human proteases, caspase-3 and caspase-8, were identified and confirmed to act by a mechanism that involved proteolysis at the site in the APP-Gal4 chimera that corresponded to the natural caspase cleavage site in APP, thus linking a readily scorable phenotype to proteolytic processing of APP. The activation of caspase-3 involved a mechanism that was independent of aspartic acid residue 175 at the cleavage site normally required for processing of caspase-3.
Tài liệu tham khảo
Price, D. L., and Sisodia, S. S. (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu. Rev. Neurosci. 21, 479–505.
Kang, J., Lemaire, H-G., Unterbeck, A., Salbaum, M., Masters, C. L., Grzeschik, K. H., et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 331, 733–736.
Vassar, R., Bennet, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741.
Hussain, I., Powell, D., Howlett, D. R., Tew, D. G., Meek, T. D., Chapman, C., et al. (1999) Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. 14, 419–427.
Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., et al. (1999) Membraneanchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402, 533–537.
Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 420, 537–540.
Lin, X., Koelsch, G., Wu, S., Downs, D., Dashti, A., and Tang, J. (2000) Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA 97, 1456–1460.
Haass, C., and Selkoe, D. J. (1993) Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75, 1039–1042.
Barnes, N. Y., Li, L., Yoshikawa, K., Schwartz, L. M., Oppenheim, R. W., and Milligan, C. E. (1998) Increased production of amyloid precursor protein provides a substrate for caspase-3 in dying motoneurons. J. Neurosci. 18, 5869–5880.
Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., et al. (1999) Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406.
Pellegrini, L., Passer, B. J., Tabaton, M., Ganjei, J. K., and D’Adamio, L. (1999) Alternative, nonsecretase processing of Alzheimer’s β-amyloid precursor protein during apoptosis by caspase-6 and -8. J. Biol. Chem. 274, 21011–21016.
Weidemann, A., Paliga, K., Dürrwang, U., Reinhard, F. B. M., Schukert, O., Evin, G., and Masters, C. L. (1999) Proteolytic processing of the Alzheimer’s disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases. J. Biol. Chem. 274, 5823–5829.
Cohen, G. M. (1997) Caspases: the executioners of apoptosis. Biochem J. 326, 1–16.
Thornberry, N. A., and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.
Talanian, R. V., Quinlan, C., Trautz, S., Hackett, M. C., Mankovitch, J. A., Banach, D., et al. (1997) Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682.
Thornberry, N. A., Rano, T. A., Peterson, E. P., D.M. Rasper, D. M., Timkey, T., Garcia-Calvo, M., et al. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272, 17907–17911.
Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.
Kang, J. J., Schaber, M. D., Srinivasula, S. M., Alnemri, E. S., Litwack, G., Hall, D. J., and Bjornsti, M-A. (1999) Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 3189–3198.
Fernandes-Alnemri, T., Armstrong, R. C., Krebs, J., Srinivasula, S. M., Wang, L., Bullrich, F., et al. (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93, 7464–7469.
Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S. (1996) Molecular ordering of the Fas-apoptotic pathway: The Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl. Acad. Sci. USA 93, 14486–14491.
Stroh, C., and Schulze-Osthoff, K. (1998) Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 5, 997–1000.
Johnston, S. A., and Hopper, J. E. (1982) Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc. Natl. Acad. Sci. USA 79, 6971–6975
Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., and Greengard, P. (1992) Choroquine inhibits intracellular degradation but not secretion of Alzheimer β/A4 amyloid precursor protein. Proc. Natl. Acad. Sci. USA 89, 2252–2256.
Estus, S., Golde, T., Kunishita, T., Blades, D., Lowery, D., Eisen, M., et al. (1992) Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid precursor protein. Science 255, 726–728
Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. (1992) Processing of the amyloid precursor to potentially amyloidogenic derivatives. Science 255, 728–730.
Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992) Targeting of cell-surface β-amyloid precursor to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503.
Hawkins, C. J., Wang, S. L., and Hay, B. A. (1999) A cloning method to identify caspases and their regulators in yeast: Identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl. Acad. Sci. USA 96, 2885–2890.
Steiner, H., Pesold, B., and Haass, C. (1999) An in vivo assay for the identification of target proteases which cleave membrane-associated substrates. FEBS Let. 463, 245–249.
Hines, V., Zhang, W., Ramakrishna, N., Styles, J., Mehta, P., Kim, K. S., et al. (1994) The expression and processing of β-amyloid peptide precursors in Saccharomyces cerevisiae: Evidence for a novel endopeptidase in the yeast secretory system. Cell. Mol. Biol. Res. 40, 273–284.
Zhang, H., Komano, H., Fuller, R. S., Gandy, S. E., and Frail, D. E. (1994) Proteolytic processing and secretion of human β-amyloid precursor protein in yeast. J. Biol. Chem. 269, 27799–27802.
Zhang, W., Espinoza, D., Hines, V., Innis, M., Mehta, P., and Miller, D. L. (1997) Characterization of β-amyloid peptide precursor processing by the yeast Yap3 and Mkc7 proteases. Biochim. Biophys. Acta. 1359, 110–122.
Le Brocque, D., Henry, A., Cappai, R., Li, Q-X., Tanner, J. E., Galatis, D., et al. (1998) Processing of the Alzheimer’s disease amyloid precursor protein in Pichia pastoris: Immunodetection of α-, β-, and γ-secretase products. Biochemistry 37, 14958–14965.
Greenfield, J.P., Xu, H., Greengard, P., Gandy, S., and Seeger, M. (1999) Generation of the amyloid-β peptide N terminus in Saccharomyces cerevisiae expressing human Alzheimer’s amyloid-β precursor protein. J. Biol. Chem. 274, 33843–33846.
Harper, J. W., Adami, G. R., Wei, N., Kayomaisi, K., and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 75, 805–816.
James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.
Guthrie, C., and Fink, G. R. (1991) Guide to yeast genetics and molecular biology. Methods in Enzymology 194.
Gietz, R. D., and Sugino, A. (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenised yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.
Gietz, R. D., and Schiestl, R. H. (1995) Transforming yeast with DNA. Meth. Mol. Cell. Biol. 5, 255–269.
Boeke, J. D., LaCroute, F., and Fink, G. R. (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoroorotic acid resistance. Mol. Gen. Genet. 197, 345–346.
Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S., and Matsuo, H. (1988) Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Commun. 156, 246–54.
De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., et al. (1998) Deficiency of presernilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390.
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T., and Selkoe, D. J. (1999) Two membrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517.