A visualization study of flow boiling heat transfer with nanofluids

Journal of Visualization - Tập 16 Số 2 - Trang 133-143 - 2013
Kulbhushan Rana1, Anil K. Rajvanshi1, Ghanshyam Das Agrawal1
1Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdelmessiah AH, Hooper FC, Nangia S (1972) Flow effects on bubble growth and collapse in surface boiling. Int J Heat Mass Transf 15:115–125. doi: 10.1016/0017-9310(72)90170-6

Abernethy RB, Benedict RP, Dowdell RB (1983) ASME measurement uncertainty. Trans ASME J Instrum 32:157–165

Ahn HS, Kang SH, Jo HJ, Kim H, Kim MH (2011) Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall. Int J Multiphase Flow 37:215–228. doi: 10.1016/j.ijmultiphaseflow.2010.09.005

Akiyama M, Tachibana F (1974) Motion of vapour bubbles in sub-cooled heated channel. Bull JSME 17:241–247

Bankoff SG (1958) Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J 4:24–26. doi: 10.1002/aic.690040105

Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows. ASME, New York, FED-vol. 231/MD-vol. 66, pp 99–I05

Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids: science and technology. Wiley, Hoboken

Gerardi C, Buongiorno J, Hu L, McKrell T (2011) Infrared thermometry study of nanofluid pool boiling phenomena. Nanoscale Res Lett 6:1–12. doi: 10.1186/1556-276X-6-232

Gonzalez RC, Woods RC (1993) Digital image processing, 1st edn. Addison-Wesley Publishing Company, New York

Gunther FC (1951) Photographic study of surface-boiling heat transfer to water with forced convection. Trans ASME Ser C J Heat Transf 73:115–123

Jo B, Jeon PS, Yoo J, Kim HJ (2009) Wide range parametric study for the pool boiling of nano-fluids with a circular plate heater. J Vis 12:37–46. doi: 10.1007/BF03181941

Kim SJ, McKrell T, Buongiorno J, Hu L (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240:1186–1194. doi: 10.1016/j.nucengdes.2010.01.020

Maurus R, Ilchenko V, Sattelmayer T (2002) Study of the bubble characteristics and the local void fraction in subcooled flow boiling using digital imaging and analyzing techniques. Exp Thermal Fluid Sci 26:147–155. doi: 10.1016/S0894-1777(02)00121-8

Puli U, Rajvanshi AK (2012a) An image analysis technique for determination of void fraction in subcooled flow boiling of water in horizontal annulus at high pressures. Int J Heat Fluid Flow 38:180–189. doi: 10.1016/j.ijheatfluidflow.2012.06.006

Puli U, Rajvanshi AK (2012b) Parametric effect of pressure on bubble size distribution in subcooled flow boiling of water in a horizontal annulus. Exp Thermal Fluid Sci 37:164–170. doi: 10.1016/j.expthermflusci.2011.11.001

Thome JR, Wojtan L, Ursenbacher T (2005) Investigation of flow boiling in horizontal tubes: part I—a new diabatic two-phase flow pattern map. Int J Heat Mass Transf 48:2955–2969. doi: 10.1016/j.ijheatmasstransfer.2004.12.012

Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523. doi: 10.1016/j.rser.2005.01.010

Wen D, Corr M, Hu X, Lin G (2011) Boiling heat transfer of nanofluids: the effect of heating surface modification. Int J Thermal Sci 50:480–485. doi: 10.1016/j.ijthermalsci.2010.10.017