A visual analytics approach for models of heterogeneous cell populations

Springer Science and Business Media LLC - Tập 2012 - Trang 1-13 - 2012
Jan Hasenauer1, Julian Heinrich2, Malgorzata Doszczak3, Peter Scheurich3, Daniel Weiskopf2, Frank Allgöwer1
1Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
2Visualization Research Center, University of Stuttgart, Stuttgart, Germany
3Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany

Tóm tắt

In recent years, cell population models have become increasingly common. In contrast to classic single cell models, population models allow for the study of cell-to-cell variability, a crucial phenomenon in most populations of primary cells, cancer cells, and stem cells. Unfortunately, tools for in-depth analysis of population models are still missing. This problem originates from the complexity of population models. Particularly important are methods to determine the source of heterogeneity (e.g., genetics or epigenetic differences) and to select potential (bio-)markers. We propose an analysis based on visual analytics to tackle this problem. Our approach combines parallel-coordinates plots, used for a visual assessment of the high-dimensional dependencies, and nonlinear support vector machines, for the quantification of effects. The method can be employed to study qualitative and quantitative differences among cells. To illustrate the different components, we perform a case study using the proapoptotic signal transduction pathway involved in cellular apoptosis.

Tài liệu tham khảo

Avery S: Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 2006, 4: 577-587. 10.1038/nrmicro1460 Snijder B, Pelkmans L: Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol 2011, 12(2):119-25. 10.1038/nrm3044 Eldar A, Elowitz M: Functional roles for noise in genetic circuits. Nature 2010, 467(9):1-7. 10.1038/nj7319-1 Albeck J, Burke J, Spencer S, Lauffenburger D, Sorger P: Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 2008, 6(12):2831-2852. Spencer S, Gaudet S, Albeck J, Burke J, Sorger P: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459(7245):428-433. 10.1038/nature08012 Niepel M, Spencer S, Sorger P: Non-genetic cell-to-cell variability and the consequences for pharmacology. Cur Opin Biotechnol 2009, 13(5-6):556-561. Singh D, Ku CJ, Wichaidit C, Steininger R, Wu L, Altschuler S: Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 2010, 6(369):1-10. Paulsson J: Models of stochastic gene expression. Phys Life Rev 2005, 2(2):157-175. 10.1016/j.plrev.2005.03.003 Glauche I, Moore K, Thielecke L, Horn K, Loeffler M, Roeder I: Stem cell proliferation and quiescence — two sides of the same coin. PLoS Comput Biol 2009, 5(7):e1000447. [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000447] 10.1371/journal.pcbi.1000447 Huh D, Paulsson J: Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Gen 2011, 43(2):95-102. 10.1038/ng.729 Glauche I, Thielecke L, Roeder I: Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective. Aging Cell 2011, 10: 457-465. 10.1111/j.1474-9726.2011.00692.x Swain P, Elowitz M, Siggia E: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 2002, 99(20):12795-12800. 10.1073/pnas.162041399 Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgöwer F: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinf 2011, 12: 125. 10.1186/1471-2105-12-125 Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgöwer F: Analysis of heterogeneous cell populations: a density-based modeling and identification framework. J Process Control 2011, 21(10):1417-1425. 10.1016/j.jprocont.2011.06.020 Koeppl H, Zechner C, Ganguly A, Pelet S, Peter M: Accounting for extrinsic variability in the estimation of stochastic rate constants. Int J Robust Nonlinear Control 2012, 22(10):1-21. Guckenheimer J, Holmes P: Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields. In Appl Math Sci. Volume 42. Springer-Verlag, New York; 1983. Inselberg A, Dimsdale B: Parallel coordinates: A tool for visualizing multi-dimensional geometry. In Proc of IEEE Visualization. Edited by: Kaufman A. Los Alamitos, California, IEEE Computer Society Press; 1990:361-378. Vapnik V: The Nature of Statistical Learning Theory. Springer, New York; 1995. Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge; 2000. Ivanciuc O: Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry. Volume 23. Edited by: Lipkowitz KB, Cindari TR. Wiley-VCH, Weinheim; 2007. Hasenauer J, Heinrich J, Doszczak M, Scheurich P, Weiskopf D, Allgöwer F: Visualization methods and support vector machines as tools for determining markers in models of heterogeneous populations: Proapoptotic signaling as a case study. In Proc of Workshop Comp Syst Biol. Edited by: Koeppl H, Aćimović J, Kesselin J, Mäki-Marttunen T. Zürich, Switzerland; 2011:61-64. (TICSP series # 57) Novak B, Pataki Z, Ciliberto A, Tyson J: Mathematical model of the cell division cycle of fission yeast. Chaos 2001, 11: 277-286. 10.1063/1.1345725 Pan J, Chen RH: Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev 2004, 18: 1439-1451. 10.1101/gad.1184204 Thomas J, Cook K: A visual analytics agenda. IEEE Comput Graph Appl 2006, 26: 10-13. Heinrich J, Weiskopf D: Continuous parallel coordinates. IEEE Trans Vis Comput Graph 2009, 15(6):1531-1538. Feng D, Kwock L, Lee Y, Taylor R: Matching visual saliency to confidence in plots of uncertain data. IEEE Trans Vis Comput Graph 2010, 16(6):980-989. Heinrich J, Bachthaler S, Weiskopf D: Progressive splatting of continuous scatterplots and parallel coordinates. Comput Graph Forum 2011, 30(3):653-662. 10.1111/j.1467-8659.2011.01914.x Zweig M, Campbell G: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993, 39(8):561-577. Schölkopf B, Sung K, Burges C, Girosi F, Niyogi P, Poggio T, Vapnik V: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 1997, 45: 2758-2765. 10.1109/78.650102 Smola A, Schölkopf B: A tutorial on support vector regression. Stat Comp 2004, 14(3):199-222. Chang CC, Lin CJ: LIBSVM: A library for support vector machines. IEEE/ACM Trans Intell Syst Tech 2011, 2(3):1-27. Wajant H, Pfizenmaier K, Scheurich P: Tumor necrosis factor signaling. Cell Death Diff 2003, 10: 45-65. 10.1038/sj.cdd.4401189 Gewirtz D, Holt S, Grant S (Eds): Cancer Drug Discovery and Development In Apoptosis, Senescence, and Cancer. 2nd edition. Humana Press, Totowa; 2007. Spencer S, Sorger P: Measuring and modeling apoptosis in single cells. Cell 2011, 144(6):926-939. 10.1016/j.cell.2011.03.002 Eissing T, Conzelmann H, Gilles E, Allgöwer F, Bullinger E, Scheurich P: Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 2004, 279(35):36892-36897. 10.1074/jbc.M404893200 Albeck J, Burke J, Aldridge B, Zhang M, Lau enburger D, Sorger P: Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 2008, 30: 11-25. 10.1016/j.molcel.2008.02.012 Eissing T, Chaves M, Allgöwer F: Live and let die — a systems biology view on cell death. Comput Chem Eng 2009, 33(3):583-589. 10.1016/j.compchemeng.2008.10.014 Schlatter R, Schmich K, Vizcarra I, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O: ON/OFF and beyond — a boolean model of apoptosis. PLoS Comput Biol 2009, 5(12):1-13. Rehm M, Huber H, Dussmann H, Prehn J: Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 2006, 25(18):4338-4349. 10.1038/sj.emboj.7601295 Würstle M, Laussmann M, Rehm M: The caspase-8 dimerisation/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signalling. J Biol Chem 2010, 285(43):33209-33218. 10.1074/jbc.M110.113860 Jost P, Grabow S, Gray D, McKenzie M, Nachbur U, Huang D, Bouillet P, Thomas H, Borner C, Silke J, Strasser A, Kaufmann T: XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 2009, 460(7258):1035-1039. 10.1038/nature08229 Schöberl B, Pace E, Fitzgerald J, Harms B, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West K, Leszczyniecka M, Feldhaus M, Kudla A, Nielsen U: Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2009, 2(77):ra31. 10.1126/scisignal.2000352 Schmidt H, Jirstrand M: Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinf 2006, 22(4):514-515. 10.1093/bioinformatics/bti799