A visual analytics approach for models of heterogeneous cell populations
Tóm tắt
In recent years, cell population models have become increasingly common. In contrast to classic single cell models, population models allow for the study of cell-to-cell variability, a crucial phenomenon in most populations of primary cells, cancer cells, and stem cells. Unfortunately, tools for in-depth analysis of population models are still missing. This problem originates from the complexity of population models. Particularly important are methods to determine the source of heterogeneity (e.g., genetics or epigenetic differences) and to select potential (bio-)markers. We propose an analysis based on visual analytics to tackle this problem. Our approach combines parallel-coordinates plots, used for a visual assessment of the high-dimensional dependencies, and nonlinear support vector machines, for the quantification of effects. The method can be employed to study qualitative and quantitative differences among cells. To illustrate the different components, we perform a case study using the proapoptotic signal transduction pathway involved in cellular apoptosis.
Tài liệu tham khảo
Avery S: Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 2006, 4: 577-587. 10.1038/nrmicro1460
Snijder B, Pelkmans L: Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol 2011, 12(2):119-25. 10.1038/nrm3044
Eldar A, Elowitz M: Functional roles for noise in genetic circuits. Nature 2010, 467(9):1-7. 10.1038/nj7319-1
Albeck J, Burke J, Spencer S, Lauffenburger D, Sorger P: Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 2008, 6(12):2831-2852.
Spencer S, Gaudet S, Albeck J, Burke J, Sorger P: Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 2009, 459(7245):428-433. 10.1038/nature08012
Niepel M, Spencer S, Sorger P: Non-genetic cell-to-cell variability and the consequences for pharmacology. Cur Opin Biotechnol 2009, 13(5-6):556-561.
Singh D, Ku CJ, Wichaidit C, Steininger R, Wu L, Altschuler S: Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 2010, 6(369):1-10.
Paulsson J: Models of stochastic gene expression. Phys Life Rev 2005, 2(2):157-175. 10.1016/j.plrev.2005.03.003
Glauche I, Moore K, Thielecke L, Horn K, Loeffler M, Roeder I: Stem cell proliferation and quiescence — two sides of the same coin. PLoS Comput Biol 2009, 5(7):e1000447. [http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000447] 10.1371/journal.pcbi.1000447
Huh D, Paulsson J: Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Gen 2011, 43(2):95-102. 10.1038/ng.729
Glauche I, Thielecke L, Roeder I: Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective. Aging Cell 2011, 10: 457-465. 10.1111/j.1474-9726.2011.00692.x
Swain P, Elowitz M, Siggia E: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 2002, 99(20):12795-12800. 10.1073/pnas.162041399
Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgöwer F: Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinf 2011, 12: 125. 10.1186/1471-2105-12-125
Hasenauer J, Waldherr S, Doszczak M, Radde N, Scheurich P, Allgöwer F: Analysis of heterogeneous cell populations: a density-based modeling and identification framework. J Process Control 2011, 21(10):1417-1425. 10.1016/j.jprocont.2011.06.020
Koeppl H, Zechner C, Ganguly A, Pelet S, Peter M: Accounting for extrinsic variability in the estimation of stochastic rate constants. Int J Robust Nonlinear Control 2012, 22(10):1-21.
Guckenheimer J, Holmes P: Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields. In Appl Math Sci. Volume 42. Springer-Verlag, New York; 1983.
Inselberg A, Dimsdale B: Parallel coordinates: A tool for visualizing multi-dimensional geometry. In Proc of IEEE Visualization. Edited by: Kaufman A. Los Alamitos, California, IEEE Computer Society Press; 1990:361-378.
Vapnik V: The Nature of Statistical Learning Theory. Springer, New York; 1995.
Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge; 2000.
Ivanciuc O: Applications of Support Vector Machines in Chemistry. In Reviews in Computational Chemistry. Volume 23. Edited by: Lipkowitz KB, Cindari TR. Wiley-VCH, Weinheim; 2007.
Hasenauer J, Heinrich J, Doszczak M, Scheurich P, Weiskopf D, Allgöwer F: Visualization methods and support vector machines as tools for determining markers in models of heterogeneous populations: Proapoptotic signaling as a case study. In Proc of Workshop Comp Syst Biol. Edited by: Koeppl H, Aćimović J, Kesselin J, Mäki-Marttunen T. Zürich, Switzerland; 2011:61-64. (TICSP series # 57)
Novak B, Pataki Z, Ciliberto A, Tyson J: Mathematical model of the cell division cycle of fission yeast. Chaos 2001, 11: 277-286. 10.1063/1.1345725
Pan J, Chen RH: Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev 2004, 18: 1439-1451. 10.1101/gad.1184204
Thomas J, Cook K: A visual analytics agenda. IEEE Comput Graph Appl 2006, 26: 10-13.
Heinrich J, Weiskopf D: Continuous parallel coordinates. IEEE Trans Vis Comput Graph 2009, 15(6):1531-1538.
Feng D, Kwock L, Lee Y, Taylor R: Matching visual saliency to confidence in plots of uncertain data. IEEE Trans Vis Comput Graph 2010, 16(6):980-989.
Heinrich J, Bachthaler S, Weiskopf D: Progressive splatting of continuous scatterplots and parallel coordinates. Comput Graph Forum 2011, 30(3):653-662. 10.1111/j.1467-8659.2011.01914.x
Zweig M, Campbell G: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993, 39(8):561-577.
Schölkopf B, Sung K, Burges C, Girosi F, Niyogi P, Poggio T, Vapnik V: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 1997, 45: 2758-2765. 10.1109/78.650102
Smola A, Schölkopf B: A tutorial on support vector regression. Stat Comp 2004, 14(3):199-222.
Chang CC, Lin CJ: LIBSVM: A library for support vector machines. IEEE/ACM Trans Intell Syst Tech 2011, 2(3):1-27.
Wajant H, Pfizenmaier K, Scheurich P: Tumor necrosis factor signaling. Cell Death Diff 2003, 10: 45-65. 10.1038/sj.cdd.4401189
Gewirtz D, Holt S, Grant S (Eds): Cancer Drug Discovery and Development In Apoptosis, Senescence, and Cancer. 2nd edition. Humana Press, Totowa; 2007.
Spencer S, Sorger P: Measuring and modeling apoptosis in single cells. Cell 2011, 144(6):926-939. 10.1016/j.cell.2011.03.002
Eissing T, Conzelmann H, Gilles E, Allgöwer F, Bullinger E, Scheurich P: Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 2004, 279(35):36892-36897. 10.1074/jbc.M404893200
Albeck J, Burke J, Aldridge B, Zhang M, Lau enburger D, Sorger P: Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 2008, 30: 11-25. 10.1016/j.molcel.2008.02.012
Eissing T, Chaves M, Allgöwer F: Live and let die — a systems biology view on cell death. Comput Chem Eng 2009, 33(3):583-589. 10.1016/j.compchemeng.2008.10.014
Schlatter R, Schmich K, Vizcarra I, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O: ON/OFF and beyond — a boolean model of apoptosis. PLoS Comput Biol 2009, 5(12):1-13.
Rehm M, Huber H, Dussmann H, Prehn J: Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 2006, 25(18):4338-4349. 10.1038/sj.emboj.7601295
Würstle M, Laussmann M, Rehm M: The caspase-8 dimerisation/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signalling. J Biol Chem 2010, 285(43):33209-33218. 10.1074/jbc.M110.113860
Jost P, Grabow S, Gray D, McKenzie M, Nachbur U, Huang D, Bouillet P, Thomas H, Borner C, Silke J, Strasser A, Kaufmann T: XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 2009, 460(7258):1035-1039. 10.1038/nature08229
Schöberl B, Pace E, Fitzgerald J, Harms B, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West K, Leszczyniecka M, Feldhaus M, Kudla A, Nielsen U: Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2009, 2(77):ra31. 10.1126/scisignal.2000352
Schmidt H, Jirstrand M: Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinf 2006, 22(4):514-515. 10.1093/bioinformatics/bti799