A versatile chemosensor for the detection of Al3+ and picric acid (PA) in aqueous solution

Dalton Transactions - Tập 47 Số 44 - Trang 15907-15916
Barnali Naskar1,2,3,4, Antonio Bauzá5,6,7,8, Antonio Frontera5,6,7,8, Dilip K. Maiti1,2,3,4, Chitrangada Das Mukhopadhyay9,10,2,11, Sanchita Goswami1,2,3,4
1Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India
2India
3Kolkata
4University of Calcutta,
507122 Palma de Mallorca
6Departament de Química
7Spain
8Universitat de les IllesBalears
9Centre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
10Howrah – 711103
11Indian Institute of Engineering Science and Technology

Tóm tắt

The selective detection of Al3+ and picric acid in water has been realized by means of a fluorescence spectroscopy-based chemosensor.

Từ khóa


Tài liệu tham khảo

Wu, 2017, Chem. Soc. Rev., 46, 7105, 10.1039/C7CS00240H

He, 2016, Chem. Soc. Rev., 45, 6449, 10.1039/C6CS00413J

Gupta, 2016, RSC Adv., 6, 106413, 10.1039/C6RA23682K

Saleem, 2015, RSC Adv., 5, 72150, 10.1039/C5RA11388A

Ding, 2013, Inorg. Chem., 52, 7320, 10.1021/ic401028u

Maity, 2011, Eur. J. Inorg. Chem., 2011, 5479, 10.1002/ejic.201100772

Pu, 2016, Dyes Pigm., 129, 24, 10.1016/j.dyepig.2016.02.001

Fasman, 1996, Coord. Chem. Rev., 149, 125, 10.1016/S0010-8545(96)90020-X

Flaten, 2001, Brain Res. Bull., 55, 187, 10.1016/S0361-9230(01)00459-2

Walton, 2006, Neurotoxicology, 27, 385, 10.1016/j.neuro.2005.11.007

B. R. Stephens and J. S.Jolliff , Diet and Nutrition in Dementia and Cognitive Decline , 2015 , pp. 553–562

Nayak, 2002, Environ. Res., 89, 101, 10.1006/enrs.2002.4352

Sarkar, 2017, Sens. Actuators, B, 242, 338, 10.1016/j.snb.2016.11.059

Jun Lee, 2015, Biosens. Bioelectron., 69, 226, 10.1016/j.bios.2015.02.038

Choi, 2014, Sens. Actuators, B, 194, 343, 10.1016/j.snb.2013.12.114

Tong, 1990, Analyst, 115, 947, 10.1039/an9901500947

Rao, 2006, J. Agric. Food Chem., 54, 2868, 10.1021/jf0600049

Aluminium in drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality , World Health Organization , 2010 , WHO Reference number: WHO/HSE/WSH/10.01/13

Soroka, 1987, Anal. Chem., 59, 629, 10.1021/ac00131a019

Kumar, 2017, RSC Adv., 7, 23127, 10.1039/C7RA01453H

Sun, 2015, Chem. Soc. Rev., 44, 8019, 10.1039/C5CS00496A

Salinas, 2012, Chem. Soc. Rev., 41, 1261, 10.1039/C1CS15173H

Zyryanov, 2014, Russ. Chem. Rev., 83, 783, 10.1070/RC2014v083n09ABEH004467

Smith, 2008, Analyst, 133, 571, 10.1039/b717933m

Sang, 2015, J. Mater. Chem. A, 3, 92, 10.1039/C4TA04903A

Asha, 2016, Nanoscale, 8, 11782, 10.1039/C5NR08159A

Nagarkar, 2016, CrystEngComm, 18, 2994, 10.1039/C6CE00244G

Beyer, 2002, J. Organomet. Chem., 654, 187, 10.1016/S0022-328X(02)01427-4

E. Bingham , B.Cohrssen and C. H.Powell , Patty's, Toxicology , John Wiley& Sons , New York , 2000 , vol. IIB , p. 980

Singh, 2007, J. Hazard. Mater., 144, 15, 10.1016/j.jhazmat.2007.02.018

S. Talmage , D.Opresko , C.Maxwell , C. E.Welsh , F. M.Cretella , P.Reno and F. B.Daniel , in Rev. Environ. Contam T , ed. G. Ware , Springer , New York , 1999 , vol. 161 , pp. 1–156

Barman, 2012, Chem. Commun., 48, 11127, 10.1039/c2cc34430k

T. L. Davis , The Chemistry of Powder and Explosives , Angriff Press , 1943

Zhang, 2016, CrystEngComm, 18, 193, 10.1039/C5CE01917F

Tan, 2016, RSC Adv., 6, 61725, 10.1039/C6RA07244E

Fu, 2016, Cryst. Growth Des., 16, 5074, 10.1021/acs.cgd.6b00669

Environmental Protection Agency, innovative treatment technologies: Annual status report, 8th edn, 1996 , EPA-542-R-96-010

Lee, 2010, Chem. – Eur. J., 16, 5895, 10.1002/chem.200903439

Shanmugaraju, 2011, J. Mater. Chem., 21, 9130, 10.1039/c1jm10406c

Germain, 2009, Chem. Soc. Rev., 38, 2543, 10.1039/b809631g

Kartha, 2015, Chem. Rec., 15, 252, 10.1002/tcr.201402063

Shanmugaraju, 2014, Proc. Natl. Acad. Sci., India, Sect. A, 84, 197, 10.1007/s40010-014-0128-6

Feng, 2014, Chem. – Eur. J., 20, 195, 10.1002/chem.201302638

Ivy, 2012, Chem. Sci., 3, 1773, 10.1039/c2sc20083j

Buragohain, 2016, Cryst. Growth Des., 16, 842, 10.1021/acs.cgd.5b01427

Sk, 2016, CrystEngComm, 18, 3104, 10.1039/C6CE00421K

Nagarkar, 2014, Chem. Commun., 50, 8915, 10.1039/C4CC03053B

Zhou, 2013, Dalton Trans., 42, 12403, 10.1039/c3dt51081f

Nagarkar, 2015, Dalton Trans., 44, 15175, 10.1039/C5DT00397K

Nagarkar, 2013, Angew. Chem., Int. Ed., 52, 2881, 10.1002/anie.201208885

Joarder, 2014, Chem. – Eur. J., 20, 1, 10.1002/chem.201402855

Song, 2014, Adv. Funct. Mater., 24, 4034, 10.1002/adfm.201303986

Wen, 2013, Chem. Commun., 49, 5660, 10.1039/c3cc42241k

Zhao, 2014, Inorg. Chem. Commun., 46, 212, 10.1016/j.inoche.2014.05.037

Xiao, 2013, J. Mater. Chem. A, 1, 8745, 10.1039/c3ta11517h

Mukherjee, 2015, Cryst. Growth Des., 15, 4627, 10.1021/acs.cgd.5b00902

Moore, 2004, Rev. Sci. Instrum., 75, 2499, 10.1063/1.1771493

Sylvia, 2000, Anal. Chem., 72, 5834, 10.1021/ac0006573

Caulfield, 2009, J. Chem. Eng. Data, 54, 1814, 10.1021/je800851j

H°akansson, 2000, J. Mass Spectrom., 35, 337, 10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7

Luggar, 1998, X-Ray Spectrom., 27, 87, 10.1002/(SICI)1097-4539(199803/04)27:2<87::AID-XRS256>3.0.CO;2-0

Anferov, 2000, Rev. Sci. Instrum., 71, 1656, 10.1063/1.1150514

Chen, 2017, Acc. Chem. Res., 50, 1410, 10.1021/acs.accounts.7b00087

He, 2016, Chem. Soc. Rev., 45, 6449, 10.1039/C6CS00413J

Tang, 2015, Chem. Soc. Rev., 44, 5003, 10.1039/C5CS00103J

Madhu, 2014, RSC Adv., 4, 7120, 10.1039/c3ra46565a

Sun, 2015, Chem. Soc. Rev., 44, 8019, 10.1039/C5CS00496A

Bereau, 2014, Chem. Commun., 50, 12061, 10.1039/C4CC05888G

Maiti, 2017, ACS Omega, 2, 1583, 10.1021/acsomega.6b00288

Maity, 2017, Sens. Actuators, B, 248, 223, 10.1016/j.snb.2017.03.161

Sodkhomkhum, 2017, Sens. Actuators, B, 245, 665, 10.1016/j.snb.2017.01.120

Kumari, 2016, Sens. Actuators, B, 229, 599, 10.1016/j.snb.2016.02.019

Fang, 2015, Organometallics, 34, 2962, 10.1021/acs.organomet.5b00285

Zhang, 2014, Chem. Sci., 5, 2710, 10.1039/c4sc00721b

Dolai, 2013, Inorg. Chim. Acta, 399, 95, 10.1016/j.ica.2013.01.006

Dolai, 2015, Dalton Trans., 44, 13242, 10.1039/C5DT00960J

Liao, 2012, Cryst. Growth Des., 12, 970, 10.1021/cg201444p

Griffiths, 2017, Cryst. Growth Des., 17, 1524, 10.1021/acs.cgd.6b01401

Fu, 2018, Cryst. Growth Des., 18, 1020, 10.1021/acs.cgd.7b01490

Jiang, 2016, Dalton Trans., 45, 10233, 10.1039/C6DT00380J

Jiang, 2017, Dalton Trans., 46, 12558, 10.1039/C7DT02351K

Chandrasekhar, 2013, Inorg. Chem., 52, 2588, 10.1021/ic302614k

Smith, 2003, Inorg. Chem., 42, 7410, 10.1021/ic034640p

Dey, 2017, Inorg. Chem., 56, 14612, 10.1021/acs.inorgchem.7b02450

Datta, 2012, Inorg. Chem. Commun., 24, 216, 10.1016/j.inoche.2012.07.017

Doctrow, 2002, J. Med. Chem., 4, 4549, 10.1021/jm020207y

Elmali, 2004, J. Mol. Struct., 693, 225, 10.1016/j.molstruc.2004.02.037

Anarjan, 2017, J. Mol. Struct., 1131, 258, 10.1016/j.molstruc.2016.11.059

Paul, 2017, Microporous Mesoporous Mater., 249, 78, 10.1016/j.micromeso.2017.04.048

Mitra, 2014, Polyhedron, 67, 19, 10.1016/j.poly.2013.08.064

Pal, 2015, Spectrochim. Acta, Part A, 144, 148, 10.1016/j.saa.2015.02.046

Ghose, 1982, Synth. React. Inorg. Met.-Org. Chem., 12, 835, 10.1080/00945718208056020

Dey, 2018, Eur. J. Inorg. Chem., 15, 1645, 10.1002/ejic.201701429

Casida, 1998, J. Chem. Phys., 108, 4439, 10.1063/1.475855

Stratmann, 1998, J. Chem. Phys., 109, 8218, 10.1063/1.477483

Bauernschmitt, 1996, Chem. Phys. Lett., 256, 454, 10.1016/0009-2614(96)00440-X

Perdew, 1986, Phys. Rev. B: Condens. Matter Mater. Phys., 33, 8822, 10.1103/PhysRevB.33.8822

Cossi, 2003, J. Comput. Chem., 24, 669, 10.1002/jcc.10189

Cossi, 2001, J. Chem. Phys., 115, 4708, 10.1063/1.1394921

Barone, 1998, J. Phys. Chem. A, 102, 1995, 10.1021/jp9716997

Benesi, 1949, J. Am. Chem. Soc., 71, 2703, 10.1021/ja01176a030

Sinha, 2016, Inorg. Chem., 55, 9212, 10.1021/acs.inorgchem.6b01170

Walton, 2006, Neurotoxicology, 27, 385, 10.1016/j.neuro.2005.11.007

Das, 2013, Dalton Trans., 42, 4757, 10.1039/c3dt32908a

J. R. Lakowicz , Priniples of Fluorescence Spectroscopy , Plenum , New York , 3rd edn, 2006