A versatile and reproducible automatic injection system for liquid standard introduction: application to in-situ calibration

Atmospheric Measurement Techniques - Tập 4 Số 9 - Trang 1937-1942
Gabriel Isaacman‐VanWertz1, Nathan M. Kreisberg2, David R. Worton2,1, Susanne V. Hering2, A. H. Goldstein1
1Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
2Aerosol Dynamics Inc. , Berkeley , California , USA.

Tóm tắt

Abstract. The quantitation of trace organic compounds in ambient organic aerosol is difficult due to the chemical complexity of these mixtures, but is needed to provide insight into their sources and formation processes. Compound-level characterization of organic aerosols is typically performed through sample collection followed by gas or liquid chromatography. With these methods, introduction of liquid standards has long been used as an effective means of quantifying trace compounds, but automating this technique for use with in-situ instrumentation has not previously been achieved. Here we develop an automatic injection system (AutoInject) for the introduction of liquids into a custom collection and analysis cell for improved quantitation in chromatographic measurements. The system consists of chilled reservoirs containing liquid standards from which a sample loop is loaded and then injected into the cell. The AutoInject is shown to be reproducible over 106 injections with a relative standard deviation of 1.5%, and have negligible injection-to-injection carryover. A 6-port selector allows injection of different liquid standards separately or simultaneously. Additionally, automatic injection of multiple sample loops is shown to generate a linear multi-point calibration curve. Tests conducted in this work focus on use with the Thermal desorption Aerosol Gas chromatograph (TAG), but the flexibility of the system allows it to be used for a variety of applications.

Từ khóa


Tài liệu tham khảo

Fraser, M. P. and Lakshmanan, K.: Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols, Environ. Sci. Technol., 34, 4560–4564, 2000.

Gao, S., Keywood, M., Ng, N. L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R. C., and Seinfeld, J. H.: Low-Molecular-Weight and Oligomeric Components in Secondary Organic Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene, J. Phys. Chem. A, 108, 10147–10164, 2004.

Goldstein, A. H. and Galbally, I.: Known and unexplored organic constituents in the earth's atmosphere, Environ. Sci. Technol., 41, 1514–1521, 2007.

Jaoui, M., Edney, E. O., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., Surratt, J. D., and Seinfeld, J. H.: Formation of secondary organic aerosol from irradiated a-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide, J. Geophys. Res., 113, D09303, https://doi.org/10.1029/2007JD009426, 2008.

Jardine, K. J., Henderson, W. M., Huxman, T. E., and Abrell, L.: Dynamic Solution Injection: a new method for preparing pptv-ppbv standard atmospheres of volatile organic compounds, Atmos. Meas. Tech., 3, 1569–1576, http://dx.doi.org/10.5194/amt-3-1569-2010https://doi.org/10.5194/amt-3-1569-2010, 2010.

Kreisberg, N. M., Hering, S. V., Williams, B. J., Worton, D. R., and Goldstein, A. H.: Quantification of Hourly Speciated Organic Compounds in Atmospheric Aerosols, Measured by an In-Situ Thermal Desorption Aerosol Gas Chromatograph (TAG), Aerosol Sci. Tech., 41, 38–52, 2009.

Mazurek, M. A.: Molecular Identification of Organic Compounds in Atmospheric Complex Mixtures and Relationship to Atmospheric Chemistry and Sources, Environ. Health Persp., 110, 995–1003, 2002.

Mazurek, M. A., Cass, G. R., and Simoneit, B. R.: Interpretation of High-Resolution Gas Chromatography and High-Resolution Gas Chromatography/Mass Spectrometry Data Acquired from Atmospheric Organic Aerosol Samples, Aerosol Sci. Tech., 10, 408–420, 1989.

Offenberg, J. H., Lewandowski, M., Jaoui, M., and Kleindienst, T. E.: Contributions of Biogenic and Anthropogenic Hydrocarbons to Secondary Organic Aerosol during 2006 in Research Triangle Park, NC, Aerosol Air Qual. Res., 99–108, 2011.

Rogge, W. F.: Molecular Tracers for Sources of Atmospheric Carbon Particles: Measurements and Model Predictions, Ph. D. thesis, California Institute of Technology, 1993.

Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., and Cass, G. R.: Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ., 30, 3837–3855, 1996.

Simoneit, B. R.: A review of current applications of mass spectrometry for biomarker/molecular tracer elucidation, Mass Spectrom. Rev., 24, 719–765, 2005.

Surratt, J. D., Go, Y., Chan, A. W., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A, 112, 8345–8378, 2008.

van Midwoud, P. M., Janssen, J., Merema, M. T., Graaf, I. A., Groothuis, G. M., and Verpoorte, E.: On-line HPLC Analysis System for Metabolism and Inhibition Studies in Precision-Cut Liver Slices, Anal. Chem., 83, 84–91, 2011.

Williams, B. J., Goldstein, A. H., Kreisberg, N. M., and Hering, S. V.: An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG), Aerosol Sci. Tech., 40, 627–638, 2006.

Williams, B. J., Goldstein, A. H., Kreisberg, N. M., Hering, S. V., Worsnop, D. R., Ulbrich, I. M., Docherty, K. S., and Jimenez, J. L.: Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds, Atmos. Chem. Phys., 10, 11577–11603, https://doi.org/10.5194/acp-10-11577-2010, 2010.

Winterhalter, R., Herrmann, F., Kanawati, B., Nguyen, T. L., Peeters, J., Vereecken, L., and Moortgat, G. K.: The gas-phase ozonolysis of beta-caryophyllene (C(15)H(24)), Part I: an experimental study, Phys. Chem. Chem. Phys., 11, 4152–4172, 2009.