A vector CTL–RTL hierarchy with bi-Hamiltonian structure

Applied Mathematics Letters - Tập 87 - Trang 154-159 - 2019
Jinyan Zhu1, Ruguang Zhou1
1School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China

Tài liệu tham khảo

Toda, 1967, Vibration of a chain with non-linear interation, J. Phys. Soc. Japan, 22, 431, 10.1143/JPSJ.22.431 Ruijsenaars, 1990, Relativistic Toda systems, Comm. Math. Phys., 133, 217, 10.1007/BF02097366 Ma, 2004, A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations, J. Phys. A: Math. Gen., 37, 1323, 10.1088/0305-4470/37/4/018 Jiang, 2006, Hierarchy of combined TL-RTL equations and an associated (2+1) dimensional lattice equation, Commun. Theor. Phys., 46, 773, 10.1088/0253-6102/46/5/002 Tsuchida, 1999, Integrable semi-discretization of the coupled nonlinear Schrödinger equations, J. Phys. A: Math. Gen., 32, 2239, 10.1088/0305-4470/32/11/016 Ablowitz, 2004 Svinolupov, 1994, Explicit Bäcklund transformations for multifield Schrodinger equations, Jordan generalizations of the Toda chain, Theoret. Math. Phys., 98, 139, 10.1007/BF01015792 Adler, 1999, Multi-component Volterra and Toda type integrable equations, Phys. Lett. A, 254, 24, 10.1016/S0375-9601(99)00087-0 Carstea, 2015, Coupled discrete KdV equations and modular genetic networks, J. Phys. A, 48, 055205, 10.1088/1751-8113/48/5/055205 Babalic, 2017, Coupled Ablowitz-Ladik equations with branched dispersion, J. Phys. A, 50, 415201, 10.1088/1751-8121/aa87a4